• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Miniaturized three-dimensional cancer model for drug evaluation

    Author(s)
    Lovitt, Carrie J
    Shelper, Todd B
    Avery, Vicky M
    Griffith University Author(s)
    Avery, Vicky M.
    Lovitt, Carrie J.
    Shelper, Todd B.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    A more relevant in vitro cell culture model that closely mimics tumor biology and provides better predictive information on anticancer therapies has been the focus of much attention in recent years. We have developed a three-dimensional (3D) human tumor cell culture model that attempts to recreate the in vivo microenvironment and tumor biology in a miniaturized 384-well plate format. This model aims to exploit the potential of 3D cell culture as a screening tool for novel therapeutics for discovery programs. Here we have evaluated a Matrigel頢ased induction of 3D tumor formation using standard labware and plate reading ...
    View more >
    A more relevant in vitro cell culture model that closely mimics tumor biology and provides better predictive information on anticancer therapies has been the focus of much attention in recent years. We have developed a three-dimensional (3D) human tumor cell culture model that attempts to recreate the in vivo microenvironment and tumor biology in a miniaturized 384-well plate format. This model aims to exploit the potential of 3D cell culture as a screening tool for novel therapeutics for discovery programs. Here we have evaluated a Matrigel頢ased induction of 3D tumor formation using standard labware and plate reading equipment. We have demonstrated that with an optimized protocol, reproducible proliferation, and cell viability data can be obtained across a range of cell lines and reagent batches. A panel of reference drugs was used to validate the suitability of the assays for a high throughput drug discovery program. Indicators of assay reproducibility, such as Z'-factor and coefficient of variation, as well as dose response curves confirmed the robustness of the assays. Several methods of drug activity determination were examined, including metabolic and imaging based assays. These data demonstrate this model as a robust tool for drug discovery bridging the gap between monolayer cell culture and animal models, providing insights into drug efficacy at an earlier time point, ultimately reducing costs and high attrition rates.
    View less >
    Journal Title
    ASSAY and Drug Development Technologies
    Volume
    11
    Issue
    7
    DOI
    https://doi.org/10.1089/adt.2012.483
    Subject
    Medicinal and Biomolecular Chemistry not elsewhere classified
    Medicinal and Biomolecular Chemistry
    Physical Chemistry (incl. Structural)
    Pharmacology and Pharmaceutical Sciences
    Publication URI
    http://hdl.handle.net/10072/56543
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander