• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hyperspectral Image Classification Based on Structured Sparse Logistic Regression and Three-Dimensional Wavelet Texture Features

    Thumbnail
    View/Open
    91336_1.pdf (1.095Mb)
    Author(s)
    Qian, Yuntao
    Ye, Minchao
    Zhou, Jun
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Hyperspectral remote sensing imagery contains rich information on spectral and spatial distributions of distinct surface materials. Owing to its numerous and continuous spectral bands, hyperspectral data enable more accurate and reliable material classification than using panchromatic or multispectral imagery. However, high-dimensional spectral features and limited number of available training samples have caused some difficulties in the classification, such as overfitting in learning, noise sensitiveness, overloaded computation, and lack of meaningful physical interpretability. In this paper, we propose a hyperspectral ...
    View more >
    Hyperspectral remote sensing imagery contains rich information on spectral and spatial distributions of distinct surface materials. Owing to its numerous and continuous spectral bands, hyperspectral data enable more accurate and reliable material classification than using panchromatic or multispectral imagery. However, high-dimensional spectral features and limited number of available training samples have caused some difficulties in the classification, such as overfitting in learning, noise sensitiveness, overloaded computation, and lack of meaningful physical interpretability. In this paper, we propose a hyperspectral feature extraction and pixel classification method based on structured sparse logistic regression and 3-D discrete wavelet transform (3D-DWT) texture features. The 3D-DWT decomposes a hyperspectral data cube at different scales, frequencies, and orientations, during which the hyperspectral data cube is considered as a whole tensor instead of adapting the data to a vector or matrix. This allows the capture of geometrical and statistical spectral-spatial structures. After the feature extraction step, sparse representation/modeling is applied for data analysis and processing via sparse regularized optimization, which selects a small subset of the original feature variables to model the data for regression and classification purpose. A linear structured sparse logistic regression model is proposed to simultaneously select the discriminant features from the pool of 3D-DWT texture features and learn the coefficients of the linear classifier, in which the prior knowledge about feature structure can be mapped into the various sparsity-inducing norms such as lasso, group, and sparse group lasso. Furthermore, to overcome the limitation of linear models, we extended the linear sparse model to nonlinear classification by partitioning the feature space into subspaces of linearly separable samples. The advantages of our methods are validated on the real h- perspectral remote sensing data sets.
    View less >
    Journal Title
    IEEE Transactions on Geoscience and Remote Sensing
    Volume
    51
    Issue
    4
    DOI
    https://doi.org/10.1109/TGRS.2012.2209657
    Copyright Statement
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Geophysics
    Computer vision
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/56556
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander