3-(Oxazolo[4,5-b]pyridin-2-yl)anilides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei, the causative agent for human African trypanosomiasis
Author(s)
Ferrins, Lori
Rahmani, Raphael
Sykes, Melissa L
Jones, Amy J
Avery, Vicky M
Teston, Eliott
Almohaywi, Basmah
Yin, JieXiang
Smith, Jason
Hyland, Chris
White, Karen L
Ryan, Eileen
Campbell, Michael
Charman, Susan A
Kaiser, Marcel
Baell, Jonathan B
Year published
2013
Metadata
Show full item recordAbstract
A whole organism high-throughput screen of approximately 87,000 compounds against Trypanosoma brucei brucei led to the recent discovery of several novel compound classes with low micromolar activity against this organism and without appreciable cytotoxicity to mammalian cells. Herein we report a structure-activity relationship (SAR) investigation around one of these hit classes, the 3-(oxazolo[4,5-b]pyridin-2-yl)anilides. Sharp SAR is revealed, with our most active compound (5) exhibiting an IC50 of 91 nM against the human pathogenic strain T.b. rhodesiense and being more than 700 times less toxic towards the L6 mammalian ...
View more >A whole organism high-throughput screen of approximately 87,000 compounds against Trypanosoma brucei brucei led to the recent discovery of several novel compound classes with low micromolar activity against this organism and without appreciable cytotoxicity to mammalian cells. Herein we report a structure-activity relationship (SAR) investigation around one of these hit classes, the 3-(oxazolo[4,5-b]pyridin-2-yl)anilides. Sharp SAR is revealed, with our most active compound (5) exhibiting an IC50 of 91 nM against the human pathogenic strain T.b. rhodesiense and being more than 700 times less toxic towards the L6 mammalian cell line. Physicochemical properties are attractive for many compounds in this series. For the most potent representatives, we show that solubility and metabolic stability are key parameters to target during future optimisation.
View less >
View more >A whole organism high-throughput screen of approximately 87,000 compounds against Trypanosoma brucei brucei led to the recent discovery of several novel compound classes with low micromolar activity against this organism and without appreciable cytotoxicity to mammalian cells. Herein we report a structure-activity relationship (SAR) investigation around one of these hit classes, the 3-(oxazolo[4,5-b]pyridin-2-yl)anilides. Sharp SAR is revealed, with our most active compound (5) exhibiting an IC50 of 91 nM against the human pathogenic strain T.b. rhodesiense and being more than 700 times less toxic towards the L6 mammalian cell line. Physicochemical properties are attractive for many compounds in this series. For the most potent representatives, we show that solubility and metabolic stability are key parameters to target during future optimisation.
View less >
Journal Title
European Journal of Medicinal Chemistry
Volume
66
Subject
Medicinal and Biomolecular Chemistry not elsewhere classified
Medicinal and Biomolecular Chemistry
Organic Chemistry
Pharmacology and Pharmaceutical Sciences