• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Salinity gradient energy: a new source of renewable energy for Australia

    Author(s)
    Helfer, Fernanda
    Anissimov, Yuri
    Lemckert, Charles
    Sahin, Oz
    Griffith University Author(s)
    Lemckert, Charles J.
    Sahin, Oz
    Anissimov, Yuri G.
    Helfer, Fernanda
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Energy production in Australia depends heavily on fossil fuel combustion, which has adverse effects on our environment, including climate change. To reduce its reliance on this perilous source of energy, the country has been giving significant financial incentives to promote renewable energy. Today, renewable energy accounts for less than 5% of the energy consumption, but this share is estimated to reach 8% by 2030. Australia also expects 20% of the electricity generation to be provided by renewable sources by 2020, representing a significant increase compared to the current share of only 7%. This predicted growth in renewables ...
    View more >
    Energy production in Australia depends heavily on fossil fuel combustion, which has adverse effects on our environment, including climate change. To reduce its reliance on this perilous source of energy, the country has been giving significant financial incentives to promote renewable energy. Today, renewable energy accounts for less than 5% of the energy consumption, but this share is estimated to reach 8% by 2030. Australia also expects 20% of the electricity generation to be provided by renewable sources by 2020, representing a significant increase compared to the current share of only 7%. This predicted growth in renewables is a response to government targets set to reduce gas emissions and financial incentives for research and development on renewables. In this study, we present salinity energy as an alternative of renewable energy source for Australia. Salinity energy occurs in nature during the mixing of waters with different salt concentrations (e.g. where rivers meet the oceans). When efficiently harnessed, this energy can be turned into power. This article analyses Pressure-Retarded Osmosis, a technology available to harness salinity energy and discusses possibilities for the exploitation of salinity energy in Australia. This research found that the country has a significant potential for osmotic power production. Some favourable factors are: 1) The proximity of the major energy consumption centres to the ocean; 2) The high evaporation rates that could be used to generate more concentrated solutions with higher power production potential; 3) The existence of vast areas of salt beds that could be used to generate brine; 4) The projected desalination plants that could be coupled to osmotic power plants and 5) Government incentives for research on renewable energy.
    View less >
    Conference Title
    Proceedings of 8th International Conference of EWRA: Water Resources Management in an Interdisciplinary and Changing Context
    Publisher URI
    http://www.ewra2013.ewra.net/
    Subject
    Engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/56657
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander