• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mixed heuristic local search for protein structure prediction

    Author(s)
    Shatabda, S
    Newton, MAH
    Sattar, A
    Griffith University Author(s)
    Sattar, Abdul
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Protein structure prediction is an unsolved problem in computational biology. One great difficulty is due to the unknown factors in the actual energy function. Moreover, the energy models available are often not very informative particularly when spatially similar structures are compared during search. We introduce several novel heuristics to augment the energy model and present a new local search algorithm that exploits these heuristics in a mixed fashion. Although the heuristics individually are weaker in performance than the energy function, their combination interestingly produces stronger results. For standard benchmark ...
    View more >
    Protein structure prediction is an unsolved problem in computational biology. One great difficulty is due to the unknown factors in the actual energy function. Moreover, the energy models available are often not very informative particularly when spatially similar structures are compared during search. We introduce several novel heuristics to augment the energy model and present a new local search algorithm that exploits these heuristics in a mixed fashion. Although the heuristics individually are weaker in performance than the energy function, their combination interestingly produces stronger results. For standard benchmark proteins on the face centered cubic lattice and a realistic 20x20 energy model, we obtain structures with significantly lower energy than those obtained by the state-of-the-art algorithms. We also report results for these proteins using the same energy model on the cubic lattice.
    View less >
    Conference Title
    Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013
    Publisher URI
    http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6321
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/56690
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander