• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects beyond the random-phase approximation in calculating the interaction between metal films

    Author(s)
    Jung, J
    Garcia-Gonzalez, P
    Dobson, JF
    Godby, RW
    Griffith University Author(s)
    Dobson, John F.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    The performance of the adiabatic-connection fluctuation-dissipation theorem is discussed through the implementation of a non-local energy optimized exchange-correlation kernel to account for short-range correlation effects. We evaluate the jellium surface energy, through a painstaking extrapolation of single slab calculations, as well as the binding and interaction energies between two and three jellium slabs. Whereas total electron correlation energies are rather sensitive to the details of the kernel, any physically well-motivated approximation within our framework describes binding energies (including surface energies) ...
    View more >
    The performance of the adiabatic-connection fluctuation-dissipation theorem is discussed through the implementation of a non-local energy optimized exchange-correlation kernel to account for short-range correlation effects. We evaluate the jellium surface energy, through a painstaking extrapolation of single slab calculations, as well as the binding and interaction energies between two and three jellium slabs. Whereas total electron correlation energies are rather sensitive to the details of the kernel, any physically well-motivated approximation within our framework describes binding energies (including surface energies) within the same level of accuracy.
    View less >
    Journal Title
    Physical Review B: Condensed Matter and Materials Physics
    Volume
    70
    Publisher URI
    http://prola.aps.org/
    DOI
    https://doi.org/10.1103/PhysRevB.70.205107
    Copyright Statement
    © 2004 American Physical Society. Reproduced in accordance with the copyright policy of the publisher. This journal is available online - use hypertext links.
    Subject
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/5694
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander