• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors

    Author(s)
    Barroilhet, L
    Yang, J
    Hasselblatt, K
    Paranal, RM
    Ng, Shu-Kay
    Rauh-Hain, JA
    Welch, WR
    Bradner, JE
    Berkowitz, RS
    Ng, S-W
    Griffith University Author(s)
    Ng, Shu Kay Angus
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    In this study, we show that interfering with the splicing machinery results in activation of the tumour-suppressor p53. The spliceosome was targeted by small interfering RNA-mediated knockdown of proteins associated with different small nuclear ribonucleoprotein complexes and by using the small-molecule splicing modulator TG003. These interventions cause: the accumulation of p53, an increase in p53 transcriptional activity and can result in p53-dependent G1 cell cycle arrest. Mdm2 and MdmX are two key repressors of p53. We show that a decrease in MdmX protein level contributes to p53 activation in response to targeting the ...
    View more >
    In this study, we show that interfering with the splicing machinery results in activation of the tumour-suppressor p53. The spliceosome was targeted by small interfering RNA-mediated knockdown of proteins associated with different small nuclear ribonucleoprotein complexes and by using the small-molecule splicing modulator TG003. These interventions cause: the accumulation of p53, an increase in p53 transcriptional activity and can result in p53-dependent G1 cell cycle arrest. Mdm2 and MdmX are two key repressors of p53. We show that a decrease in MdmX protein level contributes to p53 activation in response to targeting the spliceosome. Interfering with the spliceosome also causes an increase in the rate of degradation of Mdm2. Alterations in splicing are linked with tumour development. There are frequently global changes in splicing in cancer. Our study suggests that p53 activation could participate in protection against potential tumour-promoting defects in the spliceosome. A number of known p53-activating agents affect the splicing machinery and this could contribute to their ability to upregulate p53. Preclinical studies indicate that tumours can be more sensitive than normal cells to small-molecule spliceosome inhibitors. Activation of p53 could influence the selective anti-tumour activity of this therapeutic approach.
    View less >
    Journal Title
    Oncogene
    Volume
    32
    DOI
    https://doi.org/10.1038/onc.2012.38
    Subject
    Medical and Health Sciences not elsewhere classified
    Clinical Sciences
    Oncology and Carcinogenesis
    Publication URI
    http://hdl.handle.net/10072/56950
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander