Modeling of semisolid structure formation in controlled nucleation method
Author(s)
Yao, X
Wang, H
Griffith University Author(s)
Year published
2006
Metadata
Show full item recordAbstract
Modeling the semisolid structure formation is of significance in both understanding the mechanisms of the formation of such structure and optimization of the solidification conditions for the required structure. A modified cellular automaton (mCA) model has been developed, which is coupled with macroscopic models for heat transfer calculation and microscopic models for nucleation and grain growth. The mCA model is applied to Al-Si alloys, one of the most widely used semisolid alloys. It predicts microstructure morphology and grain size during semi-solid solidification, and determines the effects of poring temperature and ...
View more >Modeling the semisolid structure formation is of significance in both understanding the mechanisms of the formation of such structure and optimization of the solidification conditions for the required structure. A modified cellular automaton (mCA) model has been developed, which is coupled with macroscopic models for heat transfer calculation and microscopic models for nucleation and grain growth. The mCA model is applied to Al-Si alloys, one of the most widely used semisolid alloys. It predicts microstructure morphology and grain size during semi-solid solidification, and determines the effects of poring temperature and mould temperature on the final microstructure. The simulated results are compared with those obtained experimentally. The resulting simulations give some insight into the mechanisms about the semisolid structure formation in Controlled Nucleation process.
View less >
View more >Modeling the semisolid structure formation is of significance in both understanding the mechanisms of the formation of such structure and optimization of the solidification conditions for the required structure. A modified cellular automaton (mCA) model has been developed, which is coupled with macroscopic models for heat transfer calculation and microscopic models for nucleation and grain growth. The mCA model is applied to Al-Si alloys, one of the most widely used semisolid alloys. It predicts microstructure morphology and grain size during semi-solid solidification, and determines the effects of poring temperature and mould temperature on the final microstructure. The simulated results are compared with those obtained experimentally. The resulting simulations give some insight into the mechanisms about the semisolid structure formation in Controlled Nucleation process.
View less >
Journal Title
International Journal of Modern Physics B
Volume
20
Issue
25-27
Subject
Mathematical sciences
Physical sciences
Solid state chemistry
Physical properties of materials