• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland

    Author(s)
    Zhou, Xiaoqi
    Chen, Chengrong
    Wang, Yanfen
    Xu, Zhihong
    Duan, Jichuang
    Hao, Yanbin
    Smaill, Simeon
    Griffith University Author(s)
    Xu, Zhihong
    Chen, Chengrong
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0-10 and 10-20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results ...
    View more >
    Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0-10 and 10-20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0-10 cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10-20 cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and E at the 10-20 cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+-N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10-20 cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region.
    View less >
    Journal Title
    Geoderma
    Volume
    206
    DOI
    https://doi.org/10.1016/j.geoderma.2013.04.020
    Subject
    Environmental sciences
    Soil chemistry and soil carbon sequestration (excl. carbon sequestration science)
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/56982
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander