Artificial tidal lakes: Built for humans, home for fish

View/ Open
Author(s)
Waltham, Nathan J
Connolly, Rod M
Year published
2013
Metadata
Show full item recordAbstract
The construction of artificial, residential waterways to increase the opportunities for coastal properties with waterfrontage is a common and widespread practice. We describe the fish community from the world's largest aggregation of artificial, estuarine lakes, the Burleigh Lake system that covers 280 ha on the Gold Coast in Queensland, Australia. Fish were collected from 30 sites in winter and spring of one year, and water salinity was measured 3-monthly for a 10 year period. Fish are not present in deep, bottom waters and the intensive sampling focussed on the shallow waters around lake margins. The fish fauna consisted ...
View more >The construction of artificial, residential waterways to increase the opportunities for coastal properties with waterfrontage is a common and widespread practice. We describe the fish community from the world's largest aggregation of artificial, estuarine lakes, the Burleigh Lake system that covers 280 ha on the Gold Coast in Queensland, Australia. Fish were collected from 30 sites in winter and spring of one year, and water salinity was measured 3-monthly for a 10 year period. Fish are not present in deep, bottom waters and the intensive sampling focussed on the shallow waters around lake margins. The fish fauna consisted of 33 species. All but three species are marine species that can tolerate some brackishness. The other three are freshwater species, normally found in rivers but also occurring in the upper reaches of estuaries. Fish communities differed among the lakes, reflecting a weak gradient in salinity in lakes at different distances from the single connection to the natural estuary and thus marine waters. Overall, the deeper (to 28 m), wider (700 m) characteristics of lake estates, and their incorporation of partial barriers to tidal exchange with natural reaches of estuaries, remove some of the hydrological concerns with very extensive canal estates. The shallow lake margins are habitat for a subset of fish species inhabiting adjacent natural wetlands. Where the lakes occupy space that was formerly land, this is novel habitat for fish. In place, however, where lakes have replaced natural wetlands, further comparisons of fish in lake and adjacent natural wetlands will be useful.
View less >
View more >The construction of artificial, residential waterways to increase the opportunities for coastal properties with waterfrontage is a common and widespread practice. We describe the fish community from the world's largest aggregation of artificial, estuarine lakes, the Burleigh Lake system that covers 280 ha on the Gold Coast in Queensland, Australia. Fish were collected from 30 sites in winter and spring of one year, and water salinity was measured 3-monthly for a 10 year period. Fish are not present in deep, bottom waters and the intensive sampling focussed on the shallow waters around lake margins. The fish fauna consisted of 33 species. All but three species are marine species that can tolerate some brackishness. The other three are freshwater species, normally found in rivers but also occurring in the upper reaches of estuaries. Fish communities differed among the lakes, reflecting a weak gradient in salinity in lakes at different distances from the single connection to the natural estuary and thus marine waters. Overall, the deeper (to 28 m), wider (700 m) characteristics of lake estates, and their incorporation of partial barriers to tidal exchange with natural reaches of estuaries, remove some of the hydrological concerns with very extensive canal estates. The shallow lake margins are habitat for a subset of fish species inhabiting adjacent natural wetlands. Where the lakes occupy space that was formerly land, this is novel habitat for fish. In place, however, where lakes have replaced natural wetlands, further comparisons of fish in lake and adjacent natural wetlands will be useful.
View less >
Journal Title
Ecological Engineering
Volume
60
Copyright Statement
© 2013 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Environmental Management
Earth Sciences
Environmental Sciences
Engineering