• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A New Method for Character Segmentation from Multi-Oriented Video Words

    Thumbnail
    View/Open
    92863_1.pdf (770.4Kb)
    Author(s)
    Sharma, Nabin
    Shivakumara, Palaiahnakote
    Pal, Umapada
    Blumenstein, Michael
    Tan, Chew Lim
    Griffith University Author(s)
    Blumenstein, Michael M.
    Sharma, Nabin
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    This paper presents a two-stage method for multioriented video character segmentation. Words segmented from video text lines are considered for character segmentation in the present work. Words can contain isolated or non-touching characters, as well as touching characters. Therefore, the character segmentation problem can be viewed as a two stage problem. In the first stage, text cluster is identified and isolated (non-touching) characters are segmented. The orientation of each word is computed and the segmentation paths are found in the direction perpendicular to the orientation. Candidate segmentation points computed using ...
    View more >
    This paper presents a two-stage method for multioriented video character segmentation. Words segmented from video text lines are considered for character segmentation in the present work. Words can contain isolated or non-touching characters, as well as touching characters. Therefore, the character segmentation problem can be viewed as a two stage problem. In the first stage, text cluster is identified and isolated (non-touching) characters are segmented. The orientation of each word is computed and the segmentation paths are found in the direction perpendicular to the orientation. Candidate segmentation points computed using the top distance profile are used to find the segmentation path between the characters considering the background cluster. In the second stage, the segmentation results are verified and a check is performed to ascertain whether the word component contains touching characters or not. The average width of the components is used to find the touching character components. For segmentation of the touching characters, segmentation points are then found using average stroke width information, along with the top and bottom distance profiles. The proposed method was tested on a large dataset and was evaluated in terms of precision, recall and f- measure. A comparative study with existing methods reveals the superiority of the proposed method.
    View less >
    Conference Title
    Proceedings 12th International Conference on Document Analysis and Recognition
    Publisher URI
    http://www.icdar2013.org
    DOI
    https://doi.org/10.1109/ICDAR.2013.90
    Copyright Statement
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/57217
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander