• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Predicting Continuous Local Structure and the Effect of Its Substitution for Secondary Structure in Fragment-Free Protein Structure Prediction

    Thumbnail
    View/Open
    93258_1.pdf (3.426Mb)
    Author(s)
    Faraggi, Eshel
    Yang, Yuedong
    Zhang, Shesheng
    Zhou, Yaoqi
    Griffith University Author(s)
    Zhou, Yaoqi
    Yang, Yuedong
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Local structures predicted from protein sequences are used extensively in every aspect of modeling and prediction of protein structure and function. For more than 50 years, they have been predicted at a low-resolution coarse-grained level (e.g., threestate secondary structure). Here, we combine a two-state classifier with real-value predictor to predict local structure in continuous representation by backbone torsion angles. The accuracy of the angles predicted by this approach is close to that derived from NMR chemical shifts. Their substitution for predicted secondary structure as restraints for ab initio structure ...
    View more >
    Local structures predicted from protein sequences are used extensively in every aspect of modeling and prediction of protein structure and function. For more than 50 years, they have been predicted at a low-resolution coarse-grained level (e.g., threestate secondary structure). Here, we combine a two-state classifier with real-value predictor to predict local structure in continuous representation by backbone torsion angles. The accuracy of the angles predicted by this approach is close to that derived from NMR chemical shifts. Their substitution for predicted secondary structure as restraints for ab initio structure prediction doubles the success rate. This result demonstrates the potential of predicted local structure for fragment-free tertiary-structure prediction. It further implies potentially significant benefits from using predicted real-valued torsion angles as a replacement for or supplement to the secondary-structure prediction tools used almost exclusively in many computational methods ranging from sequence alignment to function prediction.
    View less >
    Journal Title
    Structure
    Volume
    17
    Issue
    11
    DOI
    https://doi.org/10.1016/j.str.2009.09.006
    Copyright Statement
    © 2009 Elsevier Ltd. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Bioinformatics
    Chemical Sciences
    Biological Sciences
    Information and Computing Sciences
    Publication URI
    http://hdl.handle.net/10072/57417
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander