• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Specific interactions for ab initio folding of protein terminal regions with secondary structures

    Author(s)
    Yang, Yuedong
    Zhou, Yaoqi
    Griffith University Author(s)
    Zhou, Yaoqi
    Yang, Yuedong
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Proteins fold into unique three-dimensional structures by specific, orientation-dependent interactions between amino acid residues. Here, we extract orientation-dependent interactions from protein structures by treating each polar atom as a dipole with a direction. The resulting statistical energy function successfully refolds 13 out of 16 fully unfolded secondary-structure terminal regions of 10-23 amino acid residues in 15 small proteins. Dissecting the orientation-dependent energy function reveals that the orientation preference between hydrogen-bonded atoms is not enough to account for the structural specificity of ...
    View more >
    Proteins fold into unique three-dimensional structures by specific, orientation-dependent interactions between amino acid residues. Here, we extract orientation-dependent interactions from protein structures by treating each polar atom as a dipole with a direction. The resulting statistical energy function successfully refolds 13 out of 16 fully unfolded secondary-structure terminal regions of 10-23 amino acid residues in 15 small proteins. Dissecting the orientation-dependent energy function reveals that the orientation preference between hydrogen-bonded atoms is not enough to account for the structural specificity of proteins. The result has significant implications on the theoretical and experimental searches for specific interactions involved in protein folding and molecular recognition between proteins and otherbiologically active molecules.
    View less >
    Journal Title
    Proteins: Structure, Function and Genetics
    Volume
    72
    Issue
    2
    DOI
    https://doi.org/10.1002/prot.21968
    Subject
    Bioinformatics
    Mathematical Sciences
    Biological Sciences
    Information and Computing Sciences
    Publication URI
    http://hdl.handle.net/10072/57537
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander