Independence of the transient fluctuation theorem to thermostatting details

View/ Open
Author(s)
Williams, Stephen R.
Bernhardt, Debra
Evans, Denis J.
Griffith University Author(s)
Year published
2004
Metadata
Show full item recordAbstract
The fluctuation theorems show how macroscopic irreversibility arises from time reversible microscopic dynamics. They have been confirmed in computer simulations and in laboratory experiments. The standard proofs of the transient fluctuation theorems involve the use of time reversible deterministic thermostats to control the temperature of the system of interest. These mathematical thermostats do not occur in Nature. However, since in a gedanken experiment the thermostatting regions can be removed arbitrarily far from the system of interest, it has been argued that the precise details of the thermostat cannot be important and ...
View more >The fluctuation theorems show how macroscopic irreversibility arises from time reversible microscopic dynamics. They have been confirmed in computer simulations and in laboratory experiments. The standard proofs of the transient fluctuation theorems involve the use of time reversible deterministic thermostats to control the temperature of the system of interest. These mathematical thermostats do not occur in Nature. However, since in a gedanken experiment the thermostatting regions can be removed arbitrarily far from the system of interest, it has been argued that the precise details of the thermostat cannot be important and that the resulting fluctuation theorems apply to natural systems. In this paper we give a detailed analysis showing how the fluctuation theorem is independent of the precise mathematical details of the thermostatting mechanism for an infinite class of fictitious time reversible deterministic thermostats. Our analysis reinforces the implications of the gedanken experiment and implies that thermostats used in the derivations of fluctuation theorems are a convenient but ultimately irrelevant device.
View less >
View more >The fluctuation theorems show how macroscopic irreversibility arises from time reversible microscopic dynamics. They have been confirmed in computer simulations and in laboratory experiments. The standard proofs of the transient fluctuation theorems involve the use of time reversible deterministic thermostats to control the temperature of the system of interest. These mathematical thermostats do not occur in Nature. However, since in a gedanken experiment the thermostatting regions can be removed arbitrarily far from the system of interest, it has been argued that the precise details of the thermostat cannot be important and that the resulting fluctuation theorems apply to natural systems. In this paper we give a detailed analysis showing how the fluctuation theorem is independent of the precise mathematical details of the thermostatting mechanism for an infinite class of fictitious time reversible deterministic thermostats. Our analysis reinforces the implications of the gedanken experiment and implies that thermostats used in the derivations of fluctuation theorems are a convenient but ultimately irrelevant device.
View less >
Journal Title
Physical Review E: (Statistical, Nonlinear| and Soft Matter Physics)
Volume
70
Publisher URI
Copyright Statement
© 2004 American Physical Society. Reproduced in accordance with the copyright policy of the publisher. This journal is available online - use hypertext links.
Subject
Mathematical sciences
Physical sciences
Engineering