• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Short-term training alters the control of mitochondrial respiration rate before maximal oxidative ATP synthesis

    Author(s)
    Layec, G
    Haseler, LJ
    Hoff, J
    Hart, CR
    Liu, X
    Le Fur, Y
    Jeong, E-K
    Richardson, RS
    Griffith University Author(s)
    Haseler, Luke J.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Short-term exercise training may induce metabolic and performance adaptations before any changes in mitochondrial enzyme potential. However, there has not been a study that has directly assessed changes in mitochondrial oxidative capacity or metabolic control as a consequence of such training in vivo. Therefore, we used 31P-magnetic resonance spectroscopy (31P-MRS) to examine the effect of short-term plantar flexion exercise training on phosphocreatine (PCr) recovery kinetics and the control of respiration rate.Short-term exercise training may induce metabolic and performance adaptations before any changes in mitochondrial enzyme potential. However, there has not been a study that has directly assessed changes in mitochondrial oxidative capacity or metabolic control as a consequence of such training in vivo. Therefore, we used 31P-magnetic resonance spectroscopy (31P-MRS) to examine the effect of short-term plantar flexion exercise training on phosphocreatine (PCr) recovery kinetics and the control of respiration rate.
    View less >
    Journal Title
    ACTA Physiologica
    Volume
    208
    Issue
    4
    DOI
    https://doi.org/10.1111/apha.12103
    Subject
    Sports science and exercise
    Medical physiology
    Systems physiology
    Publication URI
    http://hdl.handle.net/10072/57751
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander