• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective

    Thumbnail
    View/Open
    92309_1.pdf (1.044Mb)
    Author(s)
    Zhang, Li
    Keogh, Samantha
    Rickard, Claire M
    Griffith University Author(s)
    Zhang, Li
    Rickard, Claire
    Keogh, Samantha J.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Intravascular catheter-related infections are still a major problem in health care and are associated with significant morbidity, mortality, and additional cost. The formation of microbial biofilm on catheters makes these infections particularly complicated, as microbial cells that detach from the biofilm can lead to infection, and because these microorganisms are highly resistant to many antimicrobial agents; thus, catheter removal is often required to successfully treat infection. To reduce the risks of catheter-related infections, many strategies have been applied, such as improvements in aseptic insertion and post-insertion ...
    View more >
    Intravascular catheter-related infections are still a major problem in health care and are associated with significant morbidity, mortality, and additional cost. The formation of microbial biofilm on catheters makes these infections particularly complicated, as microbial cells that detach from the biofilm can lead to infection, and because these microorganisms are highly resistant to many antimicrobial agents; thus, catheter removal is often required to successfully treat infection. To reduce the risks of catheter-related infections, many strategies have been applied, such as improvements in aseptic insertion and post-insertion care practices, implantation techniques, and antibiotic coated or impregnated materials. However, despite significant advances in using these methods, it has not been possible to completely eradicate biofilm infections. Currently, nanotechnology approaches seem to be among the most promising for preventing biofilm formation and resultant catheter-related bloodstream infection (especially with multi-resistant bacterial strains). In this review, current knowledge about catheter technology and design, the mechanisms of catheter-related bloodstream infection, and the insertion and care practices performed by medical staff, are discussed, along with novel, achievable approaches to infection prevention, based on nanotechnology.
    View less >
    Journal Title
    International Journal of Nanomedicine
    Volume
    8
    DOI
    https://doi.org/10.2147/IJN.S50312
    Copyright Statement
    © 2013 Zhang et al, publisher and licencee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Clinical Nursing: Secondary (Acute Care)
    Biochemistry and Cell Biology
    Nanotechnology
    Pharmacology and Pharmaceutical Sciences
    Publication URI
    http://hdl.handle.net/10072/57799
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander