• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A hypothesis for the function of braking forces during running turns

    Author(s)
    Jindrich, DL
    Besier, TF
    Lloyd, DG
    Griffith University Author(s)
    Lloyd, David
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    We examined the functional role of braking forces observed when humans execute turning maneuvers. Deceleration caused by braking forces contributes to changing the movement direction of the center of mass (COM) and maintaining constant velocity. We argue that braking forces also prevent over-rotation of the body about the vertical axis during maneuvers. We analyzed data from sidestep and crossover cuts at average initial running velocities of 3 m s-1. Absent braking, lateral forces would result in body rotations 1.4-3 times the change in COM movement direction, causing the orientation of the body to be substantially mis-aligned ...
    View more >
    We examined the functional role of braking forces observed when humans execute turning maneuvers. Deceleration caused by braking forces contributes to changing the movement direction of the center of mass (COM) and maintaining constant velocity. We argue that braking forces also prevent over-rotation of the body about the vertical axis during maneuvers. We analyzed data from sidestep and crossover cuts at average initial running velocities of 3 m s-1. Absent braking, lateral forces would result in body rotations 1.4-3 times the change in COM movement direction, causing the orientation of the body to be substantially mis-aligned with the direction of movement at the end of the step. A simple model based on the hypothesis that body rotation should match COM deflection can explain 70% of the variance in braking forces employed during running turns.
    View less >
    Journal Title
    Journal of Biomechanics
    Volume
    39
    Issue
    9
    DOI
    https://doi.org/10.1016/j.jbiomech.2005.05.007
    Subject
    Biomedical engineering
    Mechanical engineering
    Sports science and exercise
    Publication URI
    http://hdl.handle.net/10072/57994
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander