• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical modeling of laser stabilization by regenerative spectral hole burning

    Author(s)
    Pryde, GJ
    Bottger, T
    Cone, RL
    Griffith University Author(s)
    Pryde, Geoff
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    Regenerative transient spectral hole frequency references have provided relative optical stability, measured by the Allan deviation, on the 10−13 scale. These references are comparatively insensitive to vibration and, unlike traditional Fabry–Perot cavities, atomic references, or gated spectral holes, the reference shape and position can depend on the laser input as well as the material properties. Numerical modeling of a frequency stabilization system incorporating regenerative spectral holes has been carried out, and the importance of the specific spectral hole-burning material has been considered. It is shown that for ...
    View more >
    Regenerative transient spectral hole frequency references have provided relative optical stability, measured by the Allan deviation, on the 10−13 scale. These references are comparatively insensitive to vibration and, unlike traditional Fabry–Perot cavities, atomic references, or gated spectral holes, the reference shape and position can depend on the laser input as well as the material properties. Numerical modeling of a frequency stabilization system incorporating regenerative spectral holes has been carried out, and the importance of the specific spectral hole-burning material has been considered. It is shown that for intervals shorter than the spectral hole lifetime, the hole reference is similar to a Fabry–Perot cavity reference. For periods longer than the hole lifetime or inverse rate of spectral diffusion, the performance of the spectral hole reference can be affected by uncompensated offsets in the stabilization system caused by the environment. Quantifying each effect demonstrates which are important and determines the pathway to development of improved reference materials.
    View less >
    Journal Title
    Journal of Luminescence
    Volume
    94
    DOI
    https://doi.org/10.1016/S0022-2313(01)00328-3
    Subject
    Optical Physics
    Physical Chemistry (incl. Structural)
    Publication URI
    http://hdl.handle.net/10072/58161
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander