• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Argumentation-based abduction in disjunctive logic programming

    Author(s)
    Wang, KW
    Griffith University Author(s)
    Wang, Kewen
    Year published
    2000
    Metadata
    Show full item record
    Abstract
    In this paper, we propose an argumentation-based semantic framework, called DAS, for disjunctive logic programming. The basic idea is to translate a disjunctive logic program into an argumentation-theoretic framework. One unique feature of our proposed framework is to consider the disjunctions of negative literals as possible assumptions so as to represent incomplete information. In our framework, three semantics preferred disjunctive hypothesis (PDH), complete disjunctive hypothesis (CDH) and well-founded disjunctive hypothesis (WFDH) are defined by three kinds of acceptable hypotheses to represent credulous, moderate and ...
    View more >
    In this paper, we propose an argumentation-based semantic framework, called DAS, for disjunctive logic programming. The basic idea is to translate a disjunctive logic program into an argumentation-theoretic framework. One unique feature of our proposed framework is to consider the disjunctions of negative literals as possible assumptions so as to represent incomplete information. In our framework, three semantics preferred disjunctive hypothesis (PDH), complete disjunctive hypothesis (CDH) and well-founded disjunctive hypothesis (WFDH) are defined by three kinds of acceptable hypotheses to represent credulous, moderate and skeptical reasoning in artificial intelligence (AI), respectively. Furthermore, our semantic framework can be extended to a wider class than that of disjunctive programs (called bi-disjunctive logic programs). In addition to being a first serious attempt in establishing an argumentation-theoretic framework for disjunctive logic programming, DAS integrates and naturally extends many key semantics, such as the minimal models, extended generalized closed world assumption (EGCWA), the well-founded model, and the disjunctive stable models. In particular, novel and interesting argumentation-theoretic characterizations of the EGCWA and the disjunctive stable semantics are shown. Thus the framework presented in this paper does not only provide a new way of performing argumentation (abduction) in disjunctive deductive databases, but also is a simple, intuitive and unifying semantic framework for disjunctive logic programming.
    View less >
    Journal Title
    Journal of Logic Programming
    Volume
    45
    Issue
    1-3
    DOI
    https://doi.org/10.1016/S0743-1066(00)00004-2
    Subject
    Mathematical Sciences
    Information and Computing Sciences
    Publication URI
    http://hdl.handle.net/10072/58178
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander