Integrating RFID Technology with Intelligent Classifiers for Meaningful Prediction Knowledge

View/ Open
Author(s)
Darcy, Peter
Tucker, Steven
Stantic, Bela
Year published
2013
Metadata
Show full item recordAbstract
Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identi-fication and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ...
View more >Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identi-fication and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research.
View less >
View more >Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identi-fication and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research.
View less >
Journal Title
Advances in Internet of Things
Volume
3
Issue
2
Copyright Statement
© 2013 The authors and SciRes. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Pattern Recognition and Data Mining
Data Structures