Show simple item record

dc.contributor.authorEstivill-Castro, V
dc.contributor.authorNoy, M
dc.contributor.authorUrrutia, J
dc.contributor.editorPeter L. Hammer
dc.date.accessioned2006-07-17
dc.date.accessioned2014-04-14T23:37:15Z
dc.date.accessioned2017-03-02T00:01:20Z
dc.date.available2017-03-02T00:01:20Z
dc.date.issued2000
dc.date.modified2014-04-14T23:37:15Z
dc.identifier.issn0012-365X
dc.identifier.doi10.1016/S0012-365X(00)00092-3
dc.identifier.urihttp://hdl.handle.net/10072/58382
dc.description.abstractThe tree graph T(G) of a connected graph G has as vertices the spanning trees of G, and two trees are adjacent if one is obtained from the other by interchanging one edge. In this paper we study the chromatic number of T(G) and of a related graph T∗(G).
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.publisherElsevier Science
dc.publisher.placeHolland
dc.relation.ispartofpagefrom363
dc.relation.ispartofpageto366
dc.relation.ispartofissue1-3
dc.relation.ispartofjournalDiscrete Mathematics
dc.relation.ispartofvolume223
dc.subject.fieldofresearchPure Mathematics
dc.subject.fieldofresearchApplied Mathematics
dc.subject.fieldofresearchComputation Theory and Mathematics
dc.subject.fieldofresearchcode0101
dc.subject.fieldofresearchcode0102
dc.subject.fieldofresearchcode0802
dc.titleOn the chromatic number of tree graphs
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codec1x
gro.facultyFaculty of Engineering and Information Technology
gro.date.issued2000
gro.hasfulltextNo Full Text
gro.griffith.authorEstivill-Castro, Vladimir


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record