• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Interaction between TNFone and tetrapyrroles may account for their anti-genotoxic effects — a novel mechanism for DNA-protection

    Author(s)
    Moelzer, Christine
    Huber, Hedwig
    Steyrer, Andrea
    Ziesel, Gesa V
    Wallner, Marlies
    Goncharova, Iryna
    Orlov, Sergey
    Urbanova, Marie
    Ahlfors, Charles E
    Vitek, Libor
    Bulmer, Andrew C
    Wagner, Karl-Heinz
    Griffith University Author(s)
    Bulmer, Andrew C.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Bilirubin, the principal and biologically most relevant bile pigment was, until recently, considered a waste product of haem catabolism. However, current data suggest that bile pigments possess biological potential, related to their antioxidant and anti-mutagenic effects. In this context, it is now assumed that bile pigments and their derivatives exert these effects via multiple mechanisms, including discrete anti-oxidative and physico-chemical interactive effects. The major scientific focus so far has concentrated on the compounds' antioxidant action, and mechanistic investigations of possible mutagen-tetrapyrrole interaction ...
    View more >
    Bilirubin, the principal and biologically most relevant bile pigment was, until recently, considered a waste product of haem catabolism. However, current data suggest that bile pigments possess biological potential, related to their antioxidant and anti-mutagenic effects. In this context, it is now assumed that bile pigments and their derivatives exert these effects via multiple mechanisms, including discrete anti-oxidative and physico-chemical interactive effects. The major scientific focus so far has concentrated on the compounds' antioxidant action, and mechanistic investigations of possible mutagen-tetrapyrrole interaction are lacking. Therefore we tested structurally related bile pigments/derivatives (bilirubin/-ditaurate/-dimethyl ester, biliverdin/-dimethyl ester, urobilin, stercobilin and protoporphyrin) for anti-genotoxicity in the Salmonella reverse mutation assay (strains TA98, TA102), together with the synthetic mutagen 2,4,7-trinitro-9H-fluoren-9-one (TNFone). To explore possible structural interactions, molecular systems of chlorin e6 porphyrin/bilirubin/biliverdin with TNFone were assayed using circular dichroism. These data consistently revealed, at suprastoichiometric concentrations, that tetrapyrroles interact with TNFone. Addition of TNFone to chlorin e6 porphyrin, bilirubin-albumin and biliverdin-albumin led to a marked change in pigment spectra, providing evidence for tight tetrapyrrole-mutagen interaction. This conclusion was also supported by substantial, TNFone-induced decrease of bilirubin oxidation in the bilirubin-albumin system. This outcome was reflected in a bacterial model, in which most tetrapyrroles and especially protoporphyrin, significantly attenuated TNFone-induced mutagenesis. These data indicate that aromatic, tetrapyrrolic molecules interact with TNFone, providing a novel mechanism to suggest the anti-mutagenic effects of bile pigments in vivo are related to their physico-chemical interaction with genotoxins.
    View less >
    Journal Title
    Journal of Porphyrins and Phthalocyanines
    Volume
    17
    Issue
    12
    DOI
    https://doi.org/10.1142/S1088424613500995
    Subject
    Medical and Health Sciences not elsewhere classified
    Organic Chemistry
    Publication URI
    http://hdl.handle.net/10072/58555
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander