• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Muscle contributions to recovery from a forward loss of balance by stepping

    Author(s)
    Graham, David F
    Carty, Christopher P
    Lloyd, David G
    Lichtwark, Glen A
    Barrett, Rod S
    Griffith University Author(s)
    Barrett, Rod
    Carty, Chris P.
    Lloyd, David
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The purpose of this study was to determine the muscular contributions to the stepping phase of recovery from forward loss of balance in 5 young and 5 older adults that were able to recover balance in a single step, and 5 older adults that required multiple steps. Forward loss of balance was achieved by releasing participants from a static forward lean angle. All participants were instructed to attempt to recover balance by taking a rapid single step. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 94 muscle ...
    View more >
    The purpose of this study was to determine the muscular contributions to the stepping phase of recovery from forward loss of balance in 5 young and 5 older adults that were able to recover balance in a single step, and 5 older adults that required multiple steps. Forward loss of balance was achieved by releasing participants from a static forward lean angle. All participants were instructed to attempt to recover balance by taking a rapid single step. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 94 muscle actuators were computed using static optimisation and induced acceleration analysis was used to compute individual muscle contributions to net lumbar spine joint, and stepping side hip joint and knee joint accelerations during recovery. Older adults that required multiple recovery steps used a significantly shorter and faster initial recovery step and adopted significantly more trunk flexion throughout recovery compared to the older single steppers. Older multiple steppers also produced significantly more force in the stance side hamstrings, which resulted in significantly higher hamstring induced flexion accelerations at the lumbar spine and extension accelerations at the hip. However since the net joint lumbar spine and hip accelerations remained similar between older multiple steppers and older single steppers, we suggest that the recovery strategy adopted by older multiple steppers was less efficient as well as less effective than for older single steppers.
    View less >
    Journal Title
    Journal of Biomechanics
    Volume
    47
    Issue
    3
    DOI
    https://doi.org/10.1016/j.jbiomech.2013.11.047
    Subject
    Biomedical engineering
    Mechanical engineering
    Sports science and exercise
    Biomechanics
    Publication URI
    http://hdl.handle.net/10072/58620
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander