Colon Cell Image Segmentation Based on Level Set and Kernel-Based Fuzzy Clustering

View/ Open
Author(s)
Gharipour, A
Liew, AWC
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
This paper presents an integration framework for image segmentation. The proposed method is based on Fuzzy c-means clustering (FCM) and level set method. In this framework, firstly Chan and Vese's level set method (CV) and Bayes classifier based on mixture of density models are utilized to find a prior membership value for each pixel. Then, a supervised kernel based fuzzy c-means clustering (SKFCM) algorithm assisted by prior membership values is developed for final segmentation. The performance of our approach has been evaluated using high-throughput fluorescence microscopy colon cancer cell images, which are commonly used ...
View more >This paper presents an integration framework for image segmentation. The proposed method is based on Fuzzy c-means clustering (FCM) and level set method. In this framework, firstly Chan and Vese's level set method (CV) and Bayes classifier based on mixture of density models are utilized to find a prior membership value for each pixel. Then, a supervised kernel based fuzzy c-means clustering (SKFCM) algorithm assisted by prior membership values is developed for final segmentation. The performance of our approach has been evaluated using high-throughput fluorescence microscopy colon cancer cell images, which are commonly used for the study of many normal and neoplastic procedures. The experimental results show the superiority of the proposed clustering algorithm in comparison with several existing techniques.
View less >
View more >This paper presents an integration framework for image segmentation. The proposed method is based on Fuzzy c-means clustering (FCM) and level set method. In this framework, firstly Chan and Vese's level set method (CV) and Bayes classifier based on mixture of density models are utilized to find a prior membership value for each pixel. Then, a supervised kernel based fuzzy c-means clustering (SKFCM) algorithm assisted by prior membership values is developed for final segmentation. The performance of our approach has been evaluated using high-throughput fluorescence microscopy colon cancer cell images, which are commonly used for the study of many normal and neoplastic procedures. The experimental results show the superiority of the proposed clustering algorithm in comparison with several existing techniques.
View less >
Conference Title
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume
7996 LNAI
Publisher URI
Copyright Statement
© 2013 Springer Berlin/Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.The original publication is available at www.springerlink.com
Subject
Computer vision