• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Stochastic gradient identification of polynomial Wiener systems: analysis and application

    Author(s)
    Celka, Patrick
    Griffith University Author(s)
    Celka, Patrick
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    This paper presents analytical, numerical, and experimental results for a stochastic gradient adaptive scheme that identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, and the stability regions of the algorithm for Gaussian data. Convergence of the mean is studied using L 2 and Euclidian norms. Monte Carlo simulations confirm the theoretical predictions that show a small sensitivity to the observation noise. An application is presented for the identification of a nonlinear time-delayed feedback systemThis paper presents analytical, numerical, and experimental results for a stochastic gradient adaptive scheme that identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, and the stability regions of the algorithm for Gaussian data. Convergence of the mean is studied using L 2 and Euclidian norms. Monte Carlo simulations confirm the theoretical predictions that show a small sensitivity to the observation noise. An application is presented for the identification of a nonlinear time-delayed feedback system
    View less >
    Journal Title
    IEEE Transaction on Signal Processing
    Volume
    49
    DOI
    https://doi.org/10.1109/78.902112
    Subject
    PRE2009-Signal Processing
    Publication URI
    http://hdl.handle.net/10072/58801
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander