Stochastic gradient identification of polynomial Wiener systems: analysis and application
Author(s)
Celka, Patrick
Griffith University Author(s)
Year published
2001
Metadata
Show full item recordAbstract
This paper presents analytical, numerical, and experimental results for a stochastic gradient adaptive scheme that identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, and the stability regions of the algorithm for Gaussian data. Convergence of the mean is studied using L 2 and Euclidian norms. Monte Carlo simulations confirm the theoretical predictions that show a small sensitivity to the observation noise. An application is presented for the identification of a nonlinear time-delayed feedback systemThis paper presents analytical, numerical, and experimental results for a stochastic gradient adaptive scheme that identifies a polynomial-type nonlinear system with memory for noisy output observations. The analysis includes the computation of the stationary points, the mean square error surface, and the stability regions of the algorithm for Gaussian data. Convergence of the mean is studied using L 2 and Euclidian norms. Monte Carlo simulations confirm the theoretical predictions that show a small sensitivity to the observation noise. An application is presented for the identification of a nonlinear time-delayed feedback system
View less >
View less >
Journal Title
IEEE Transaction on Signal Processing
Volume
49
Subject
PRE2009-Signal Processing