• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The potential for Water Hyacinth to improve the quality of Bogotá River water in the Muña Reservoir: Comparison with the performance of waste stabilisation ponds.

    Author(s)
    Giraldo E.
    Garzon Garcia, Alexandra
    Griffith University Author(s)
    Garzon Garcia, Alexandra
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    The potential application of Water Hyacinth (Eichhornia crassipes) in organic matter degradation, sedimentation, nutrient and heavy metal absorption and sulfur reduction in the Muña Reservoir has been tested in experimental lagoons. The lagoons were operated at hydraulic retention times (HRT) of 6, 9 and 15 days. One lagoon was covered with Water Hyacinth, which is naturally growing in the Muña Reservoir, while another lagoon was operated as a conventional oxidation pond. The Water Hyacinth lagoon had better removal efficiencies for almost all parameters measured: BOD5, total suspended solids, COD, nitrogen, phosphorus and ...
    View more >
    The potential application of Water Hyacinth (Eichhornia crassipes) in organic matter degradation, sedimentation, nutrient and heavy metal absorption and sulfur reduction in the Muña Reservoir has been tested in experimental lagoons. The lagoons were operated at hydraulic retention times (HRT) of 6, 9 and 15 days. One lagoon was covered with Water Hyacinth, which is naturally growing in the Muña Reservoir, while another lagoon was operated as a conventional oxidation pond. The Water Hyacinth lagoon had better removal efficiencies for almost all parameters measured: BOD5, total suspended solids, COD, nitrogen, phosphorus and heavy metals. The oxidation lagoon was facultative for HRT of 9 and 15 days, and anoxic when operated at 6 days HRT. At HRT of 15 days the water quality in the effluent of the covered lagoon corresponded to 12 mg/l of BOD, 6 mg/l of suspended solids and 0.8 mg/l of hydrogen sulfide. Hydrogen sulfide levels in the Muña reservoir can be substantially reduced at HRT higher than 15 days in both lagoons. The uncovered lagoon had better hydrogen sulfide removal during the day but presents high levels at night. If the hydraulic retention time in the Muña reservoir is increased, the water quality of the Bogota river can be substantially improved for all the HRTs tested in the pilot units. HRT seems to give a better prediction of overall effluent water quality than surface loading. More research is needed in order to define the optimum water hyacinth density in the Muña reservoir to determine its influence on the water quality of the effluent. The influence is expected to be negative due to an internal increase of BOD, solids, nutrients and metals loads due to plant decay.
    View less >
    Journal Title
    Water Science and Technology
    Volume
    45
    Issue
    1
    Publisher URI
    http://wst.iwaponline.com/content/45/1/103
    Subject
    Environmental Technologies
    Publication URI
    http://hdl.handle.net/10072/58811
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander