• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Neuromuscular Biomechanical Modeling to Understand Knee Ligament Loading

    Author(s)
    Lloyd, DG
    Buchanan, TS
    Besier, TF
    Griffith University Author(s)
    Lloyd, David
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Purpose: This article examines our use of EMG-driven neuromuscular biomechanical models to study how muscles stabilize the knee. EMG can be used to establish which activation patterns are used by people for knee stabilization. However, it does not reveal the effectiveness of these patterns. The EMG-driven models provide quantitative comparisons of the effectiveness of the different knee-stabilizing activation patterns. Methods: Subjects performed static tasks and common sporting maneuvers that challenged knee joint stability. EMG, joint posture and motion, and external forces and moments were measured during these tasks. ...
    View more >
    Purpose: This article examines our use of EMG-driven neuromuscular biomechanical models to study how muscles stabilize the knee. EMG can be used to establish which activation patterns are used by people for knee stabilization. However, it does not reveal the effectiveness of these patterns. The EMG-driven models provide quantitative comparisons of the effectiveness of the different knee-stabilizing activation patterns. Methods: Subjects performed static tasks and common sporting maneuvers that challenged knee joint stability. EMG, joint posture and motion, and external forces and moments were measured during these tasks. These data were used to calibrate the EMG-driven neuromuscular biomechanical model. We then used the model to predict the role of muscles in supporting varus and valgus moments at the knee. Results: We found specific muscle activation patterns to support varus and valgus moments. The most potent activation pattern to stabilize the knee is when the hamstrings or quadriceps are required to generate flexion or extension moments, respectively. The next most effective knee-stabilizing pattern is cocontraction of the hamstring and quadriceps. The small biarticular muscles at the knee provided the least support of varus and valgus moments. In the sporting tasks, sidestepping was found to place the anterior cruciate ligament at high risk of injury. We found that the muscles are the main defense against knee ligament injuries in these tasks. Conclusion: Traditional biomechanical and neurophysiological methods have shown that there are specific activation patterns used to stabilize the knee. By also using the EMG-driven neuromuscular biomechanical model, we have shown how effective muscles are in stabilizing the knee. This modeling method provides a new tool to understand knee joint stabilization.
    View less >
    Journal Title
    Medicine and Science in Sports and Exercise
    Volume
    37
    Issue
    11
    DOI
    https://doi.org/10.1249/01.mss.0000176676.49584.ba
    Subject
    Sports science and exercise
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/58915
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander