• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Monitoring and isolation of blood dendritic cells from apheresis products in healthy individuals: A platform for cancer immunotherapy

    Author(s)
    Lopez, JA
    Crosbie, G
    Kelly, C
    McGee, AM
    Williams, K
    Vuckovic, S
    Schuyler, R
    Rodwell, R
    Wright, SJ
    Taylor, K
    Hart, DNJ
    Griffith University Author(s)
    Lopez Ramirez, Alejandro
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    The fundamental role of dendritic cells (DC) in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC) physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, ...
    View more >
    The fundamental role of dendritic cells (DC) in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC) physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6.0 AutoPBPC) provides an operator-independent reliable source of mononuclear cells (MNC) for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17–179) BDC per 10-l procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 15 l. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c+CD123low and CD11cCD123high) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure.
    View less >
    Journal Title
    Journal Immunological Methods
    Volume
    267
    Issue
    2
    DOI
    https://doi.org/10.1016/S0022-1759(02)00185-0
    Subject
    Tumour Immunology
    Immunology
    Medical Microbiology
    Opthalmology and Optometry
    Publication URI
    http://hdl.handle.net/10072/59162
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander