Noise compensation in a person verification system using face and multiple speech features
Author(s)
Sanderson, C
Paliwal, KK
Griffith University Author(s)
Year published
2003
Metadata
Show full item recordAbstract
In this paper, we demonstrate that use of a recently proposed feature set, termed Maximum Auto-Correlation Values, which utilizes information from the source part of the speech signal, significantly improves the robustness of a text independent identity verification system. We also propose an adaptive fusion technique for integration of audio and visual information in a multi-modal verification system. The proposed technique explicitly measures the quality of the speech signal, adjusting the amount of contribution of the speech modality to the final verification decision. Results on the VidTIMIT database indicate that the ...
View more >In this paper, we demonstrate that use of a recently proposed feature set, termed Maximum Auto-Correlation Values, which utilizes information from the source part of the speech signal, significantly improves the robustness of a text independent identity verification system. We also propose an adaptive fusion technique for integration of audio and visual information in a multi-modal verification system. The proposed technique explicitly measures the quality of the speech signal, adjusting the amount of contribution of the speech modality to the final verification decision. Results on the VidTIMIT database indicate that the proposed approach outperforms existing adaptive and non-adaptive fusion techniques. For a wide range of audio SNRs, the performance of the multi-modal system utilizing the proposed technique is always found to be better than the performance of the face modality.
View less >
View more >In this paper, we demonstrate that use of a recently proposed feature set, termed Maximum Auto-Correlation Values, which utilizes information from the source part of the speech signal, significantly improves the robustness of a text independent identity verification system. We also propose an adaptive fusion technique for integration of audio and visual information in a multi-modal verification system. The proposed technique explicitly measures the quality of the speech signal, adjusting the amount of contribution of the speech modality to the final verification decision. Results on the VidTIMIT database indicate that the proposed approach outperforms existing adaptive and non-adaptive fusion techniques. For a wide range of audio SNRs, the performance of the multi-modal system utilizing the proposed technique is always found to be better than the performance of the face modality.
View less >
Journal Title
Pattern Recognition
Volume
36
Publisher URI
Copyright Statement
© 2003 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
Subject
Information systems