• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition

    Author(s)
    Wang, XC
    Paliwal, KK
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    Feature extraction is an important component of a pattern recognition system. It performs two tasks: transforming input parameter vector into a feature vector and/or reducing its dimensionality. A well-defined feature extraction algorithm makes the classification process more effective and efficient. Two popular methods for feature extraction are linear discriminant analysis (LDA) and principal component analysis (PCA). In this paper, the minimum classification error (MCE) training algorithm (which was originally proposed for optimizing classifiers) is investigated for feature extraction. A generalized MCE (GMCE) training ...
    View more >
    Feature extraction is an important component of a pattern recognition system. It performs two tasks: transforming input parameter vector into a feature vector and/or reducing its dimensionality. A well-defined feature extraction algorithm makes the classification process more effective and efficient. Two popular methods for feature extraction are linear discriminant analysis (LDA) and principal component analysis (PCA). In this paper, the minimum classification error (MCE) training algorithm (which was originally proposed for optimizing classifiers) is investigated for feature extraction. A generalized MCE (GMCE) training algorithm is proposed to mend the shortcomings of the MCE training algorithm. LDA, PCA, and MCE and GMCE algorithms extract features through linear transformation. Support vector machine (SVM) is a recently developed pattern classification algorithm, which uses non-linear kernel functions to achieve non-linear decision boundaries in the parametric space. In this paper, SVM is also investigated and compared to linear feature extraction algorithms.
    View less >
    Journal Title
    Pattern Recognition
    Volume
    36
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/328/description#description
    DOI
    https://doi.org/10.1016/S0031-3203(03)00044-X
    Copyright Statement
    © 2003 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links
    Subject
    Information systems
    Publication URI
    http://hdl.handle.net/10072/5922
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander