• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Flow-Based Anomaly Detection Using Neural Network Optimized with GSA Algorithm

    Author(s)
    Jadidi, Zahra
    Muthukkumarasamy, Vallipuram
    Sithirasenan, Elankayer
    Sheikhan, Mansour
    Griffith University Author(s)
    Muthukkumarasamy, Vallipuram
    Jadidi, Zahra
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Abstract-Reliable high-speed networks are essential to provide quality services to ever growing Internet applications. A Network Intrusion Detection System (NIDS) is an important tool to protect computer networks from attacks. Traditional packet-based NIDSs are time-intensive as they analyze all network packets. A state-of-the-art NIDS should be able to handle a high volume of traffic in real time. Flow-based intrusion detection is an effective method for high speed networks since it inspects only packet headers. The existence of new attacks in the future is another challenge for intrusion detection. Anomaly-based ...
    View more >
    Abstract-Reliable high-speed networks are essential to provide quality services to ever growing Internet applications. A Network Intrusion Detection System (NIDS) is an important tool to protect computer networks from attacks. Traditional packet-based NIDSs are time-intensive as they analyze all network packets. A state-of-the-art NIDS should be able to handle a high volume of traffic in real time. Flow-based intrusion detection is an effective method for high speed networks since it inspects only packet headers. The existence of new attacks in the future is another challenge for intrusion detection. Anomaly-based intrusion detection is a well-known method capable of detecting unknown attacks. In this paper, we propose a flow-based anomaly detection system. Artificial Neural Network (ANN) is an important approach for anomaly detection. We used a Multi-Layer Perceptron (MLP) neural network with one hidden layer. We investigate the use of a Gravitational Search Algorithm (GSA) in optimizing interconnection weights of a MLP network. Our proposed GSA-based flow anomaly detection system (GFADS) is trained with a flow-based data set. The trained system can classify benign and malicious flows with 99.43% accuracy. We compare the performance of GSA with traditional gradient descent training algorithms and a particle swarm optimization (PSO) algorithm. The results show that GFADS is effective in flow-based anomaly detection. Finally, we propose a four-feature subset as the optimal set of features.
    View less >
    Conference Title
    2013 33RD IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW 2013)
    Publisher URI
    https://ieeexplore.ieee.org/xpl/conhome/6679588/proceeding?pageNumber=2
    DOI
    https://doi.org/10.1109/ICDCSW.2013.40
    Subject
    Other information and computing sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/59794
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander