• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Modified Fuzzy C-Means Algorithm with Symmetry Information for MR Brain Image Segmentation

    Thumbnail
    View/Open
    92108_1.pdf (553.1Kb)
    Author(s)
    Jayasuriya, Surani Anuradha
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    In this paper, we present a novel modified Fuzzy Cmeans algorithm with symmetry information to reduce the effect of noise in brain tissue segmentation in magnetic resonance image (MRI). We integrate brain's bilateral symmetry into the conventional Fuzzy C-means (FCM) as an additional term. In experiments, some synthetic images, and both simulated and real brain images were used to investigate the robustness of the method against noise. Finally, the method was compared with the conventional FCM algorithm. Results show the viability of the approach and the preliminary investigation appears promising.In this paper, we present a novel modified Fuzzy Cmeans algorithm with symmetry information to reduce the effect of noise in brain tissue segmentation in magnetic resonance image (MRI). We integrate brain's bilateral symmetry into the conventional Fuzzy C-means (FCM) as an additional term. In experiments, some synthetic images, and both simulated and real brain images were used to investigate the robustness of the method against noise. Finally, the method was compared with the conventional FCM algorithm. Results show the viability of the approach and the preliminary investigation appears promising.
    View less >
    Conference Title
    2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS)
    Publisher URI
    http://www.icics.org/2013/
    DOI
    https://doi.org/10.1109/ICICS.2013.6782786
    Copyright Statement
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/59939
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander