• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Symmetry incorporated Fuzzy C-means Method for Image Segmentation

    Thumbnail
    View/Open
    87921_1.pdf (972.4Kb)
    Author(s)
    Jayasuriya, Surani Anuradha
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    This paper presents a new modified fuzzy c-means (FCM) clustering algorithm that exploits bilateral symmetry information in image data. With the assumption of pixels that are located symmetrically tend to have similar intensity values; we compute the degree of symmetry for each pixel with respect to a global symmetry axis of the image. This information is integrated into the objective function of the standard FCM algorithm. Experimental results show the effectiveness of the approach. The method was further improved using neighbourhood information, and was compared with conventional fuzzy c-means algorithms.This paper presents a new modified fuzzy c-means (FCM) clustering algorithm that exploits bilateral symmetry information in image data. With the assumption of pixels that are located symmetrically tend to have similar intensity values; we compute the degree of symmetry for each pixel with respect to a global symmetry axis of the image. This information is integrated into the objective function of the standard FCM algorithm. Experimental results show the effectiveness of the approach. The method was further improved using neighbourhood information, and was compared with conventional fuzzy c-means algorithms.
    View less >
    Conference Title
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013)
    Publisher URI
    https://ieeexplore.ieee.org/document/6622511
    DOI
    https://doi.org/10.1109/FUZZ-IEEE.2013.6622511
    Copyright Statement
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/60013
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander