Attrition due to mixing of hot and cold FCC catalyst particles.
Author(s)
Whitcombe, JM
Agranovski, IE
Braddock, RD
Year published
2003
Metadata
Show full item recordAbstract
The formation of fines in a fluidized catalytic cracker unit (FCCU) due to catalyst attrition and fracture is a major source of catalyst loss. In addition to the generation of fine particles, a significant amount of aerosols have been identified in the stack emission of FCCUs. To determine the source of these aerosols, samples of fresh and equilibrium (e-cat) type catalysts were heated up to 600 àand mixed with cold samples, simulating the thermal shock and particle fracture, which occurs inside an FCCU when catalyst is added. The thermal shock in the experiments produced fine particles and aerosols, which were captured on ...
View more >The formation of fines in a fluidized catalytic cracker unit (FCCU) due to catalyst attrition and fracture is a major source of catalyst loss. In addition to the generation of fine particles, a significant amount of aerosols have been identified in the stack emission of FCCUs. To determine the source of these aerosols, samples of fresh and equilibrium (e-cat) type catalysts were heated up to 600 àand mixed with cold samples, simulating the thermal shock and particle fracture, which occurs inside an FCCU when catalyst is added. The thermal shock in the experiments produced fine particles and aerosols, which were captured on filters and analyzed using scanning electron microscopy (SEM) imaging and atomic absorption tests. It was found that significant quantities of metal rich aerosols were generated by the thermal shock. This production of fine particles and aerosols is a new phenomenon that can help explain excessive catalyst emissions from operating FCCUs.
View less >
View more >The formation of fines in a fluidized catalytic cracker unit (FCCU) due to catalyst attrition and fracture is a major source of catalyst loss. In addition to the generation of fine particles, a significant amount of aerosols have been identified in the stack emission of FCCUs. To determine the source of these aerosols, samples of fresh and equilibrium (e-cat) type catalysts were heated up to 600 àand mixed with cold samples, simulating the thermal shock and particle fracture, which occurs inside an FCCU when catalyst is added. The thermal shock in the experiments produced fine particles and aerosols, which were captured on filters and analyzed using scanning electron microscopy (SEM) imaging and atomic absorption tests. It was found that significant quantities of metal rich aerosols were generated by the thermal shock. This production of fine particles and aerosols is a new phenomenon that can help explain excessive catalyst emissions from operating FCCUs.
View less >
Journal Title
Powder Technology
Volume
137
Publisher URI
Copyright Statement
© 2003 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
Subject
Chemical engineering
Mechanical engineering
Resources engineering and extractive metallurgy