• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of a Rapid Ferricyanide-Mediated Assay for Biochemical Oxygen Demand Using a Mixed Microbial Consortium

    Author(s)
    Catterall, K
    Zhao, HJ
    Pasco, N
    John, R
    Griffith University Author(s)
    Zhao, Huijun
    John, Richard
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    Ferricyanide-mediated (FM) microbial reactions were used for the rapid determination of the biochemical oxygen demand (BOD) of a range of synthetic and real wastewater samples. Four single-species microbial seeds and a synthetically prepared microbial consortium were compared. In all cases, the microbial consortium exhibited a greater extent and rate of biodegradation compared to the individual microbial seeds. Markedly improved correlation to the standard BOD5 method was also noted for the microbial consortium (compared to the single-species seeds). A linear dynamic range up to 200 mg BOD5 L-1 was observed, which is ...
    View more >
    Ferricyanide-mediated (FM) microbial reactions were used for the rapid determination of the biochemical oxygen demand (BOD) of a range of synthetic and real wastewater samples. Four single-species microbial seeds and a synthetically prepared microbial consortium were compared. In all cases, the microbial consortium exhibited a greater extent and rate of biodegradation compared to the individual microbial seeds. Markedly improved correlation to the standard BOD5 method was also noted for the microbial consortium (compared to the single-species seeds). A linear dynamic range up to 200 mg BOD5 L-1 was observed, which is considerably greater than the linear range of the standard BOD5 assay and most other rapid BOD assays reported. In addition, biodegradation efficiencies comparable to the 5-day BOD5 assay (and much greater than other rapid BOD assays) were observed in 3 h. A highly significant correlation (R = 0.935, p = 0.000, n = 30) between the FM-BOD method and the standard BOD5 method was found for a wide diversity of real wastewater samples. The results indicate that the FM-BOD assay is a promising, rapid, alternative to the standard 5-day BOD5 assay.
    View less >
    Journal Title
    Analytical Chemistry
    Volume
    75
    Issue
    11
    DOI
    https://doi.org/10.1021/ac0206420
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Analytical chemistry
    Other chemical sciences
    History, heritage and archaeology
    Medical biochemistry and metabolomics
    Chemical engineering
    Publication URI
    http://hdl.handle.net/10072/6026
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander