One Dimensional CuInS2-ZnS Heterostructured Nanomaterials as Low-Cost and High-Performance Counter Electrodes of Dye-Sensitized Solar Cells
Author(s)
Yi, Luoxin
Liu, Yuanyuan
Yang, Nailiang
Tang, Zhiyong
Zhao, Huijun
Ma, Guanghui
Su, Zhiguo
Wang, Dan
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Wurtzite CuInS2-ZnS heterostructured nanorods are synthesized via a seed-assisted synthetic route. Cu1.94S-ZnS heterostructured nanorods are transformed into CuInS2-ZnS by reacting with indium ions to convert copper sulfide to wurtzite CuInS2. The shapes of the CuInS2-ZnS heterostructured nanorods can be tuned from burning torch-like to longer rod-like by varying the concentration of added indium. Dye-sensitized solar cells (DSSCs) using these heterostructured nanocrystals as counter electrodes had a power conversion efficiency (7.5%) superior to DSSCs made with conventional platinum electrode (7.1%) under the same device ...
View more >Wurtzite CuInS2-ZnS heterostructured nanorods are synthesized via a seed-assisted synthetic route. Cu1.94S-ZnS heterostructured nanorods are transformed into CuInS2-ZnS by reacting with indium ions to convert copper sulfide to wurtzite CuInS2. The shapes of the CuInS2-ZnS heterostructured nanorods can be tuned from burning torch-like to longer rod-like by varying the concentration of added indium. Dye-sensitized solar cells (DSSCs) using these heterostructured nanocrystals as counter electrodes had a power conversion efficiency (7.5%) superior to DSSCs made with conventional platinum electrode (7.1%) under the same device configuration.
View less >
View more >Wurtzite CuInS2-ZnS heterostructured nanorods are synthesized via a seed-assisted synthetic route. Cu1.94S-ZnS heterostructured nanorods are transformed into CuInS2-ZnS by reacting with indium ions to convert copper sulfide to wurtzite CuInS2. The shapes of the CuInS2-ZnS heterostructured nanorods can be tuned from burning torch-like to longer rod-like by varying the concentration of added indium. Dye-sensitized solar cells (DSSCs) using these heterostructured nanocrystals as counter electrodes had a power conversion efficiency (7.5%) superior to DSSCs made with conventional platinum electrode (7.1%) under the same device configuration.
View less >
Journal Title
Energy & Environmental Science
Volume
6
Issue
3
Subject
Inorganic chemistry not elsewhere classified