• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Calibration of an oscillating nozzle-type rainfall simulator

    Author(s)
    Yu, B
    Ciesiolka, CAA
    Langford, P
    Griffith University Author(s)
    Yu, Bofu
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    Nozzle-type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot-wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 ...
    View more >
    Nozzle-type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot-wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot-wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot-wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0繷 mm. This model can be easily tested in the field by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright 頲003 John Wiley & Sons, Ltd.
    View less >
    Journal Title
    Earth Surface Processes and Landforms
    Volume
    28
    DOI
    https://doi.org/10.1002/esp.1001
    Subject
    Geology
    Physical geography and environmental geoscience
    Publication URI
    http://hdl.handle.net/10072/6044
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander