Shear properties of bilaminar polymethylmethacrylate cement mantles in revision hip joint arthroplasty.
Author(s)
Weinrauch, Patrick C
Bell, Cameron
Wilson, Lance
Goss, Ben
Lutton, Cameron
Crawford, Ross W
Griffith University Author(s)
Year published
2007
Metadata
Show full item recordAbstract
Although cement-within-cement revision arthroplasty minimizes the complications associated with removal of secure PMMA, failure at the interfacial region between new and old cement mantles remains a theoretical concern. This article assesses the variability in shear properties of bilaminar cement mantles related to duration of postcure and the use of antibiotic cements. Bilaminar cement mantles were 15% to 20% weaker than uniform mantles (P < .001) and demonstrated variability in shear strength related to duration of postcure of the freshly applied cement (P < .001). The use of Antibiotic Simplex did not significantly ...
View more >Although cement-within-cement revision arthroplasty minimizes the complications associated with removal of secure PMMA, failure at the interfacial region between new and old cement mantles remains a theoretical concern. This article assesses the variability in shear properties of bilaminar cement mantles related to duration of postcure and the use of antibiotic cements. Bilaminar cement mantles were 15% to 20% weaker than uniform mantles (P < .001) and demonstrated variability in shear strength related to duration of postcure of the freshly applied cement (P < .001). The use of Antibiotic Simplex did not significantly influence interfacial cement adhesion (P = .52). Interfacial adhesion by mechanisms other than mechanical interlock plays a significant role in the bond formed between new and old PMMA cements, with an important contribution by diffusion-based molecular interdigitation. In the presence of a secure cement-bone interface, we recommend cement-within-cement revision techniques in suitable patients.
View less >
View more >Although cement-within-cement revision arthroplasty minimizes the complications associated with removal of secure PMMA, failure at the interfacial region between new and old cement mantles remains a theoretical concern. This article assesses the variability in shear properties of bilaminar cement mantles related to duration of postcure and the use of antibiotic cements. Bilaminar cement mantles were 15% to 20% weaker than uniform mantles (P < .001) and demonstrated variability in shear strength related to duration of postcure of the freshly applied cement (P < .001). The use of Antibiotic Simplex did not significantly influence interfacial cement adhesion (P = .52). Interfacial adhesion by mechanisms other than mechanical interlock plays a significant role in the bond formed between new and old PMMA cements, with an important contribution by diffusion-based molecular interdigitation. In the presence of a secure cement-bone interface, we recommend cement-within-cement revision techniques in suitable patients.
View less >
Journal Title
Journal of Arthroplasty
Volume
22
Issue
3
Subject
Medical and Health Sciences not elsewhere classified
Biomedical Engineering
Clinical Sciences