• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells.

    Author(s)
    Siebert, Gerhard
    SM, Pond
    LJ, Bryan-Lluka
    Griffith University Author(s)
    Siebert, Gerhard
    Year published
    2000
    Metadata
    Show full item record
    Abstract
    It has been proposed that the extrapyramidal symptoms such as tardive dyskinesia developed by patients on long-term haloperidol treatment may be the result of uptake of haloperidol metabolites into neurons via the monoamine neurotransmitter transporters followed by neurotoxic events, as occurs for MPP+, the pyridinium metabolite of MPTP. We recently showed that haloperidol and its metabolites are inhibitors of the human noradrenaline transporter (NAT), dopamine transporter (DAT) and serotonin transporter (SERT), and determined their K i values for inhibition of the three transporters expressed in transfected COS-7 cells. In ...
    View more >
    It has been proposed that the extrapyramidal symptoms such as tardive dyskinesia developed by patients on long-term haloperidol treatment may be the result of uptake of haloperidol metabolites into neurons via the monoamine neurotransmitter transporters followed by neurotoxic events, as occurs for MPP+, the pyridinium metabolite of MPTP. We recently showed that haloperidol and its metabolites are inhibitors of the human noradrenaline transporter (NAT), dopamine transporter (DAT) and serotonin transporter (SERT), and determined their K i values for inhibition of the three transporters expressed in transfected COS-7 cells. In this study, we extended the investigation of these compounds to their inhibitory effects on DAT, SERT and the high affinity choline uptake (HACU) in neuronal cultures from embryonic rat brain, and investigated whether the compounds are substrates or non-transported inhibitors of the NAT, DAT and SERT in transfected COS-7 cells and DAT and SERT in the neuronal cultures. Haloperidol and its metabolites inhibited DAT, SERT and HACU in the neuronal cultures, indicating that they are not specific inhibitors of the monoamine neurotransmitter transporters. The ratio of the K i values of the least and most potent inhibitors were found to be 2.8 for DAT, 24 for SERT and 7.6 for HACU. The compounds were more potent inhibitors of DAT and SERT in neuronal cultures than we found previously in transfected COS-7 cells. The question of whether the compounds are substrates or non-transported inhibitors of the monoamine transporters was investigated by determining whether they caused an increase in efflux of [3H]amine in transfected COS-7 cells or neuronal cultures preloaded with [3H]amine. Haloperidol metabolites were weak substrates for SERT, but not for NAT or DAT, in transporter-transfected COS-7 cells. In neuronal cultures, the metabolites appeared to be non-transported inhibitors or very weak substrates of DAT and SERT. Despite inhibition of the monoamine transporters by haloperidol and its metabolites, there is little evidence to support the proposal that these compounds are likely to cause neurotoxic effects via neuronal uptake using the monoamine transporters. The mechanisms of the side effects of haloperidol therapy, such as tardive dyskinesia, are still unclear, but are unlikely to depend on interactions of the drug or its metabolites with NAT, DAT or SERT.
    View less >
    Journal Title
    Naunyn-Schmiedeberg's archives of pharmacology
    Volume
    361
    Issue
    3
    DOI
    https://doi.org/10.1007/s002109900202
    Subject
    Pharmacology and Pharmaceutical Sciences
    Medical Physiology
    Publication URI
    http://hdl.handle.net/10072/60606
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander