• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The energetics of rat papillary muscles undergoing realistic strain patterns

    Author(s)
    Mellors, L. J.
    Barclay, Christopher John
    Griffith University Author(s)
    Barclay, Chris
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    Studies of cardiac muscle energetics have traditionally used contraction protocols with strain patterns that bear little resemblance to those observed in vivo. This study aimed to develop a realistic strain protocol, based on published in situ measurements of contracting papillary muscles, for use with isolated preparations. The protocol included the three phases observed in intact papillary muscles: an initial isometric phase followed by isovelocity shortening and re-lengthening phases. Realistic papillary muscle dynamics were simulated in vitro (27 °C) using preparations isolated from the left ventricle of adult male rats. ...
    View more >
    Studies of cardiac muscle energetics have traditionally used contraction protocols with strain patterns that bear little resemblance to those observed in vivo. This study aimed to develop a realistic strain protocol, based on published in situ measurements of contracting papillary muscles, for use with isolated preparations. The protocol included the three phases observed in intact papillary muscles: an initial isometric phase followed by isovelocity shortening and re-lengthening phases. Realistic papillary muscle dynamics were simulated in vitro (27 °C) using preparations isolated from the left ventricle of adult male rats. The standard contraction protocol consisted of 40 twitches at a contraction rate of 2 Hz. Force, changes in muscle length and changes in muscle temperature were measured simultaneously. To quantify the energetic costs of contraction, work output and enthalpy output were determined, from which the maximum net mechanical efficiency could be calculated. The most notable result from these experiments was the constancy of enthalpy output per twitch, or energy cost, despite the various alterations made to the protocol. Changes in mechanical efficiency, therefore, generally reflected changes in work output per twitch. The variable that affected work output per twitch to the greatest extent was the amplitude of shortening, while changes in the duration of the initial isometric phase had little effect. Decreasing the duration of the shortening phase increased work output per twitch without altering enthalpy output per twitch. Increasing the contraction frequency from 2 to 3 Hz resulted in slight decreases in the work output per twitch and in efficiency. Using this realistic strain protocol, the maximum net mechanical efficiency of rat papillary muscles was approximately 15 %. The protocol was modified to incorporate an isometric relaxation period, thus allowing the model to simulate the main mechanical features of ventricular function.
    View less >
    Journal Title
    Journal of Experimental Biology
    Volume
    204
    Publisher URI
    http://jeb.biologists.org/content/204/21/3765.abstract
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Biological Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/60833
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander