Show simple item record

dc.contributor.authorMathers, NJ
dc.contributor.authorXu, ZH
dc.contributor.authorBlumfield, TJ
dc.contributor.authorBerners-Price, SJ
dc.contributor.authorSaffigna, PG
dc.date.accessioned2017-05-03T12:51:28Z
dc.date.available2017-05-03T12:51:28Z
dc.date.issued2003
dc.date.modified2009-09-02T07:42:43Z
dc.identifier.issn0378-1127
dc.identifier.doi10.1016/S0378-1127(02)00182-2
dc.identifier.urihttp://hdl.handle.net/10072/6086
dc.description.abstractSolid-state 13C nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeNetherlands
dc.relation.ispartofpagefrom467
dc.relation.ispartofpageto488
dc.relation.ispartofjournalForest Ecology and Management
dc.relation.ispartofvolume175
dc.subject.fieldofresearchEnvironmental sciences
dc.subject.fieldofresearchBiological sciences
dc.subject.fieldofresearchAgricultural, veterinary and food sciences
dc.subject.fieldofresearchEcology
dc.subject.fieldofresearchEcological applications
dc.subject.fieldofresearchcode41
dc.subject.fieldofresearchcode31
dc.subject.fieldofresearchcode30
dc.subject.fieldofresearchcode3103
dc.subject.fieldofresearchcode4102
dc.titleComposition and quality of harvest residues and soil organic matter under windrow residue management in young hoop pine plantations as revealed by solid-state 13C NMR spectroscopy
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.facultyGriffith Sciences, Griffith School of Environment
gro.rights.copyright© 2003 Elsevier. Please refer to the journal's website for access to the definitive, published version.
gro.date.issued2003
gro.hasfulltextNo Full Text
gro.griffith.authorXu, Zhihong
gro.griffith.authorBerners-Price, Sue J.
gro.griffith.authorBlumfield, Tim J.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record