• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Pyridoxal isonicotinoyl hydrazone analogs induce apoptosis in hematopoietic cells due to their iron-chelating properties

    Author(s)
    Buss, JL
    Neuzil, J
    Gellert, N
    Weber, C
    Ponka, P
    Griffith University Author(s)
    Neuzil, Jiri
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    Analogs of pyridoxal isonicotinoyl hydrazone (PIH) are of interest as iron chelators for the treatment of secondary iron overload and cancer. PIH, salicylaldehyde isonicotinoyl hydrazone (SIH), and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (NIH), the toxicity of which vary over two orders of magnitude, were selected for a study of their mechanisms of toxicity. PIH analogs and their iron complexes caused concentration- and time-dependent apoptosis in Jurkat T lymphocytes and K562 cells. Bcl-2 overexpression was partially anti-apoptotic, suggesting mitochondrial mediation of apoptosis. Since the pan-caspase inhibitor ...
    View more >
    Analogs of pyridoxal isonicotinoyl hydrazone (PIH) are of interest as iron chelators for the treatment of secondary iron overload and cancer. PIH, salicylaldehyde isonicotinoyl hydrazone (SIH), and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (NIH), the toxicity of which vary over two orders of magnitude, were selected for a study of their mechanisms of toxicity. PIH analogs and their iron complexes caused concentration- and time-dependent apoptosis in Jurkat T lymphocytes and K562 cells. Bcl-2 overexpression was partially anti-apoptotic, suggesting mitochondrial mediation of apoptosis. Since the pan-caspase inhibitor zVAD-fmk did not reduce lysosomal and mitochondrial destabilization, these events occur upstream of caspase activation. In contrast, phosphatidylserine externalization and the development of apoptotic morphology were inhibited significantly, indicating the role of caspases in mediating these later events. Since overexpression of CrmA had no effect on apoptosis, caspase-8 is not likely involved. Fe3+ complexes of SIH and NIH, which accumulated in 59Fe-labeled mouse reticulocytes during incubation with the chelators, also caused apoptosis. BSA, which promotes release of the complexes from cells, reduced the toxicity of SIH and NIH, suggesting that the induction of apoptosis by PIH analogs involves toxic effects mediated by their Fe3+ complexes. Moreover, analogs of these agents lacking the iron-chelating moiety were non-tox
    View less >
    Journal Title
    Biochemical Pharmacology
    Volume
    65
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/525454/description#description
    DOI
    https://doi.org/10.1016/S0006-2952(02)01512-5
    Copyright Statement
    © 2003 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links.
    Subject
    Biochemistry and cell biology
    Pharmacology and pharmaceutical sciences
    Publication URI
    http://hdl.handle.net/10072/6118
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander