• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Identifying Residential Water End Uses Underpinning Peak Day and Peak Hour Demand

    Thumbnail
    View/Open
    90754_1.pdf (1.227Mb)
    Author(s)
    Beal, Cara D
    Stewart, Rodney A
    Griffith University Author(s)
    Stewart, Rodney A.
    Beal, Cara D.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Accurate and up-to-date peak demand data is essential to ensure that future mains water supply networks reflect current usage patterns and are designed efficiently from an engineering, environmental and economic perspective. The aim of this paper was to identify the water end-uses which drive peak day demand and to examine their associated hourly diurnal demand patterns based on over 18 months of water consumption data obtained from high resolution smart meters installed in 230 residential properties across south east Queensland, Australia. Peak Day (PD) to Average Day (AD) ratios between 1-1.5 were driven by both external ...
    View more >
    Accurate and up-to-date peak demand data is essential to ensure that future mains water supply networks reflect current usage patterns and are designed efficiently from an engineering, environmental and economic perspective. The aim of this paper was to identify the water end-uses which drive peak day demand and to examine their associated hourly diurnal demand patterns based on over 18 months of water consumption data obtained from high resolution smart meters installed in 230 residential properties across south east Queensland, Australia. Peak Day (PD) to Average Day (AD) ratios between 1-1.5 were driven by both external and internal end-uses. However, as the PD:AD ratio increased above 1.5, demand was driven largely by external water usage (i.e. lawn and garden irrigation).. Peak hour ratios (i.e. PHPD:PHAD) ranged from 1.3 to 3.0 for the four peak demand days. At the end-use level, the individual end-use category PHPD:PHAD ratios were in the range of 0.7 - 3.3 for all end-uses, with the exception of external or irrigation. The ratio for this latter end-use category was typically very high, at over 10 times the average irrigation demand. Comparisons with historically-based, but currently used, peaking factors used for network distribution modelling suggests that the degree and frequency of high peaking factors are lower now, due to the high penetration of water-efficient technology and growing water conservation awareness by consumers.
    View less >
    Journal Title
    Journal of Water Resources Planning and Management
    Volume
    140
    Issue
    7
    DOI
    https://doi.org/10.1061/(ASCE)WR.1943-5452.0000357
    Copyright Statement
    © 2014 American Society of Civil Engineers (ASCE). This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Environmental management
    Civil engineering
    Environmental engineering
    Urban and regional planning not elsewhere classified
    Applied economics
    Publication URI
    http://hdl.handle.net/10072/61228
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander