• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Water security through scarcity pricing and reverse osmosis: A system dynamics approach

    Thumbnail
    View/Open
    94742_1.pdf (1.376Mb)
    Author(s)
    Sahin, Oz
    Stewart, Rodney A
    Porter, Michael G
    Griffith University Author(s)
    Stewart, Rodney A.
    Sahin, Oz
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Water supply and demand planning is often conducted independently of social and economic strategies. There are presently no comprehensive life-cycle approaches to modelling urban water balances that incorporate economic feedbacks, such as tariff adjustment, which can in turn create a financing capacity for investment responses to low reservoir levels. This paper addresses this gap, and presents a system dynamics model that augments the usual water utility representation of the physical linkages of water grids, by adding inter-connected feedback loops in tariff structures, demand levels and financing capacity. The model, ...
    View more >
    Water supply and demand planning is often conducted independently of social and economic strategies. There are presently no comprehensive life-cycle approaches to modelling urban water balances that incorporate economic feedbacks, such as tariff adjustment, which can in turn create a financing capacity for investment responses to low reservoir levels. This paper addresses this gap, and presents a system dynamics model that augments the usual water utility representation of the physical linkages of water grids, by adding inter-connected feedback loops in tariff structures, demand levels and financing capacity. The model, applied in the south-east Queensland region in Australia, enables simulation of alternatives and analysis of stocks and flows around a grid or portfolio of bulk supplies including an increasing proportion of rain-independent desalination plants. Such rain-independent water production plants complement the rain-dependent sources in the region and can potentially offer indefinite water security at a price. The study also shows how an alternative temporary drought pricing regime not only defers costly bulk supply infrastructure but actually generates greater price stability than traditional pricing approaches. The model has implications for water supply planners seeking to pro-actively plan, justify and finance portfolios of rain-dependent and rain-independent bulk water supply infrastructure. Interestingly, the modelling showed that a temporary drought pricing regime not only lowers the frequency and severity of water insecurity events but also reduces the long-run marginal cost of water supply for the region when compared to traditional reactive planning approaches that focus on restrictions to affect demand in scarcity periods.
    View less >
    Journal Title
    Journal of Cleaner Production
    DOI
    https://doi.org/10.1016/j.jclepro.2014.05.009
    Copyright Statement
    © 2014 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Water resources engineering
    Environmental engineering
    Manufacturing engineering
    Publication URI
    http://hdl.handle.net/10072/61362
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander