• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Electrical impedance tomography in the clinical assessment of lung volumes following recruitment manoeuvres

    Author(s)
    Caruana, LR
    Paratz, J
    Chang, AT
    Fraser, JF
    Griffith University Author(s)
    Paratz, Jenny D.
    Fraser, John F.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Background: Mechanical ventilation has dramatically improved outcomes in critically ill patients with respiratory failure. Minimizing volumes and higher positive end-expiratory pressures can further improve patient outcomes. Recruitment manoeuvres which can be used to individualize positive end-expiratory pressure may not improve outcome unless recruitable tissue is present. Existing methods of assessing if lung tissue is recruitable have a variety of limitations. Electrical impedance tomography (EIT) is a new technology that may be able to assess whether or not lung tissue is recruitable at the bedside. Objectives: This ...
    View more >
    Background: Mechanical ventilation has dramatically improved outcomes in critically ill patients with respiratory failure. Minimizing volumes and higher positive end-expiratory pressures can further improve patient outcomes. Recruitment manoeuvres which can be used to individualize positive end-expiratory pressure may not improve outcome unless recruitable tissue is present. Existing methods of assessing if lung tissue is recruitable have a variety of limitations. Electrical impedance tomography (EIT) is a new technology that may be able to assess whether or not lung tissue is recruitable at the bedside. Objectives: This review will assess the growing body of evidence that EIT is a promising technique which may help the clinician to optimize ventilation, while minimizing injury. We will review how the device works, the data supporting its use, and potential uses for the physical therapist in the critical care environment. Major findings: EIT is a technique of injecting current through tissue, and measuring the difference between an array of electrodes. The difference relates to the changes of volume within the chest cavity - either blood or gas. It is reproducible, non-radiative, and real-time - allowing immediate and repeated imaging in the sickest of patients, who may require high levels of peep and recruitment manoeuvres. Conclusions: This paper has demonstrated that with an understanding of the strengths and limitations of the device, EIT can be used successfully at the bedside by clinicians to guide recruitment and other clinical techniques.
    View less >
    Journal Title
    Physical therapy reviews
    Volume
    16
    Issue
    1
    DOI
    https://doi.org/10.1179/1743288X10Y.0000000021
    Subject
    Clinical sciences
    Clinical sciences not elsewhere classified
    Sports science and exercise
    Publication URI
    http://hdl.handle.net/10072/61582
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander