• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Managing temperate forests for carbon storage: impacts of logging versus forest protection on carbon stocks

    Thumbnail
    View/Open
    96062_1.pdf (21.51Mb)
    Author(s)
    Keith, Heather
    Lindenmayer, David
    Mackey, Brendan
    Blair, David
    Carter, Lauren
    McBurney, Lachlan
    Okada, Sachiko
    Konishi-Nagano, Tomoko
    Griffith University Author(s)
    Mackey, Brendan
    Keith, Heather
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Management of native forests offers opportunities to store more carbon in the land sector through two main activities. Emissions to the atmosphere can be avoided by ceasing logging. Removals of arbon dioxide from the atmosphere can be increased by allowing forests to continue growing. However, the relative benefits for carbon storage of managing native forests for wood production versus protection are contested. Additionally, the potential for carbon storage is impacted upon by disturbance events, such as wildfire, that alter the amount and longevity of carbon stocks. Using a case study of montane ash forests in southeastern ...
    View more >
    Management of native forests offers opportunities to store more carbon in the land sector through two main activities. Emissions to the atmosphere can be avoided by ceasing logging. Removals of arbon dioxide from the atmosphere can be increased by allowing forests to continue growing. However, the relative benefits for carbon storage of managing native forests for wood production versus protection are contested. Additionally, the potential for carbon storage is impacted upon by disturbance events, such as wildfire, that alter the amount and longevity of carbon stocks. Using a case study of montane ash forests in southeastern Australia, we demonstrated that the total biomass carbon stock in logged forest was 55% of the stock in old growth forest. Total biomass included above- and belowground, living and dead. Biomass carbon stock was calculated spatially as an average across the landscape, accounting for variation in environmental conditions and forest age distribution. Reduction in carbon stock in logged forest was due to 66% of the initial biomass being made into products with short lifetimes (,3 years), and to the lower average age of logged forest (,50 years compared with 100 years in old growth forest). Only 4% of the initial carbon stock in the native forest was converted to sawn timber products with lifetimes of 30-90 years. Carbon stocks are depleted in a harvested forest system compared with an old growth forest, even when storage in wood products and landfill are included. We estimated that continued logging under current plans represented a loss of 5.56 Tg C over 5 years in the area logged (824 km2), compared with a potential gain of 5.18-6.05 TgC over 5 years by allowing continued growth across the montane ash forest region (2326 km2). Avoiding emissions by not logging native forests and allowing them to continue growing is therefore an important form of carbon sequestration. The mitigation value of forest management options of protection versus logging should be assessed in terms of the amount, longevity and resilience of the carbon stored in the forest, rather than the annual rate of carbon uptake.
    View less >
    Journal Title
    Ecosphere
    Volume
    5
    Issue
    6
    DOI
    https://doi.org/10.1890/ES14-00051.1
    Copyright Statement
    © 2014 Keith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/3.0/
    Subject
    Environmental management
    Ecology
    Zoology
    Ecological applications
    Publication URI
    http://hdl.handle.net/10072/61678
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander