• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Senile coconut palm hierarchical structure as foundation for biomimetic applications

    Author(s)
    Gonzalez, OM
    Gilbert, BP
    Bailleres, H
    Guan, H
    Griffith University Author(s)
    Guan, Hong
    Gilbert, Benoit
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Superior to hardwood and softwood trees, coconut palms are able to withstand extreme weather conditions without failure. Previous studies have shown that the internal structure of coconut palm stems significantly differs from hardwood, softwood and even other palm stems, in terms of fibre orientation and density distribution, likely influencing the mechanical characteristics of the tree. This paper aims at quantifying the cocowood hierarchical structure at an integral level (stem structure). To achieved this, quantitative analysis of more than 40 senile coconut palms from Fiji and Samoa has been carried out. This paper defines ...
    View more >
    Superior to hardwood and softwood trees, coconut palms are able to withstand extreme weather conditions without failure. Previous studies have shown that the internal structure of coconut palm stems significantly differs from hardwood, softwood and even other palm stems, in terms of fibre orientation and density distribution, likely influencing the mechanical characteristics of the tree. This paper aims at quantifying the cocowood hierarchical structure at an integral level (stem structure). To achieved this, quantitative analysis of more than 40 senile coconut palms from Fiji and Samoa has been carried out. This paper defines and analyses the typical cocowood morphology (form-structure) in terms of such factors as characteristic radius, fibrovascular bundles orientation and density distribution. For the first time, the characteristic triple helix configuration traced out by the fibrovascular bundles within the cocowood structure is modelled for the whole coconut stem. Specific equations are proposed to determine these factors at any given position in the tree. Knowledge advanced from this study will provide a scientific basis for future cocowood biomechanics research, including finite element modelling and analysis for biomimetic engineering applications.
    View less >
    Conference Title
    Applied Mechanics and Materials
    Volume
    553
    Publisher URI
    http://web.aeromech.usyd.edu.au/ACCM2013/index.html
    DOI
    https://doi.org/10.4028/www.scientific.net/AMM.553.344
    Subject
    Engineering
    Structural engineering
    Publication URI
    http://hdl.handle.net/10072/61728
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander