• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Simple Lightweight Encryption Scheme for Wireless Sensor Networks

    Author(s)
    Biswas, Kamanashis
    Muthukkumarasamy, Vallipuram
    Sithirasenan, Elankayer
    Singh, Kalvinder
    Griffith University Author(s)
    Muthukkumarasamy, Vallipuram
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Security is a critical issue in many sensor network applications. A number of security mechanisms are developed for wireless sensor networks based on classical cryptography. AES, RC5, SkipJack and XXTEA are some symmetric-key encryption algorithms that are deployed in sensor network environments. However, these algorithms have their own weakness, such as vulnerable to chosen-plaintext attack, brute force attack and computational complexity. We propose an energy efficient lightweight encryption scheme based on pseudorandom bit sequence generated by elliptic curve operations. We present experimental results of our proposed ...
    View more >
    Security is a critical issue in many sensor network applications. A number of security mechanisms are developed for wireless sensor networks based on classical cryptography. AES, RC5, SkipJack and XXTEA are some symmetric-key encryption algorithms that are deployed in sensor network environments. However, these algorithms have their own weakness, such as vulnerable to chosen-plaintext attack, brute force attack and computational complexity. We propose an energy efficient lightweight encryption scheme based on pseudorandom bit sequence generated by elliptic curve operations. We present experimental results of our proposed algorithm employed on real sensor nodes operating in TinyOS. We also discuss the security strength of our algorithm by presenting the security analysis of various tests and cryptanalytic attacks.
    View less >
    Conference Title
    DISTRIBUTED COMPUTING AND NETWORKING, ICDCN 2014
    Volume
    8314
    Publisher URI
    http://www.icdcn.org/
    DOI
    https://doi.org/10.1007/978-3-642-45249-9_33
    Subject
    Information systems not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/61735
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander