• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effect of Dowel Looseness on Response of Jointed Concrete Pavements using Three-Dimensional Finite Element Analysis

    Author(s)
    Sii, HB
    Chai, GW
    van Staden, R
    Guan, H
    Griffith University Author(s)
    Guan, Hong
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    This paper evaluated an effect of dowel looseness on response of jointed concrete pavement using 3D finite-element analyses of rigid pavement systems that relies on an embedded formulation of a beam element. This embedded element allows the efficient modelling of dowel looseness using nodal contact approach and permits the dowels to be exactly located irrespective of the slab mesh lines. These studies indicate that significant reduction in load transfer efficiency and increase in both slab and base course stresses can be expected due to small gaps varies from 0.25 to 1.25mm between the dowels and the slabs. For the worst ...
    View more >
    This paper evaluated an effect of dowel looseness on response of jointed concrete pavement using 3D finite-element analyses of rigid pavement systems that relies on an embedded formulation of a beam element. This embedded element allows the efficient modelling of dowel looseness using nodal contact approach and permits the dowels to be exactly located irrespective of the slab mesh lines. These studies indicate that significant reduction in load transfer efficiency and increase in both slab and base course stresses can be expected due to small gaps varies from 0.25 to 1.25mm between the dowels and the slabs. For the worst case the LTE were reduced to 11.3% and 11.6% respectively for single wheel loading and odd dual wheel loading case while there were voids present at the base course layer for 1.25 cases 4.
    View less >
    Journal Title
    Advanced Materials Research
    Volume
    900
    DOI
    https://doi.org/10.4028/www.scientific.net/AMR.900.435
    Subject
    Engineering
    Civil engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/61920
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander