Show simple item record

dc.contributor.authorSahin, O
dc.contributor.authorSiems, RS
dc.contributor.authorStewart, RA
dc.contributor.authorPorter, Michael G
dc.date.accessioned2017-05-03T15:07:45Z
dc.date.available2017-05-03T15:07:45Z
dc.date.issued2016
dc.date.modified2014-08-07T00:12:56Z
dc.identifier.issn1364-8152
dc.identifier.doi10.1016/j.envsoft.2014.05.018
dc.identifier.urihttp://hdl.handle.net/10072/61979
dc.description.abstractThis paper details a system dynamics model developed to simulate proposed changes to water governance through the integration of supply, demand and asset management processes. To effectively accomplish this, interconnected feedback loops in tariff structures, demand levels and financing capacity are included in the model design, representing the first comprehensive life-cycle modelling of potable water systems. A number of scenarios were applied to Australia's populated South-east Queensland region, demonstrating that introducing temporary drought pricing (i.e. progressive water prices set inverse with availability), in conjunction with supply augmentation through rain-independent sources, is capable of efficiently providing water security in the future. Modelling demonstrated that this alternative tariff structure reduced demand in scarcity periods thereby preserving supply, whilst revenues are maintained to build new water supply infrastructure. In addition to exploring alternative tariffs, the potential benefits of using adaptive pressure-retarded osmosis desalination plants for both potable water and power generation was explored. This operation of these plants for power production, when they would otherwise be idle, shows promise in reducing their net energy and carbon footprints. Stakeholders in industry, government and academia were engaged in model development and validation. The constructed model displays how water resource systems can be reorganised to cope with systemic change and uncertainty.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent550593 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom348
dc.relation.ispartofpageto361
dc.relation.ispartofjournalJournal of Environmental Modelling & Software
dc.relation.ispartofvolume75
dc.rights.retentionY
dc.subject.fieldofresearchWater resources engineering
dc.subject.fieldofresearchcode400513
dc.titleParadigm shift to enhanced water supply planning through augmented grids, scarcity pricing and adaptive factory water: A system dynamics approach
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.facultyGriffith Sciences, Griffith School of Engineering
gro.rights.copyright© 2014 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
gro.hasfulltextFull Text
gro.griffith.authorStewart, Rodney A.
gro.griffith.authorSahin, Oz


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record